Annex IV

Surface Water Quality Studies

Contents

- Surface Water Quality Monitoring Program: Petawawa (Big Eddy), Ontario WESA
- 2. 2012 Baseline Water Quality and Fish Tissue Mercury *Hutchinson Environmental Sciences Ltd.*

WESA Inc. 3108 Carp Road, P.O. Box 430 Carp (Ottawa), Ontario, Canada KOA 1L0 Tel: 613-839-3053 Fax: 613-839-5376 Email: wesacarp@wesa.ca www.wesa.ca

February 25, 2011 Project No. CB8944-07

Mr. Edmond Laratta Xeneca Power Development Inc. 5160 Yonge Street, Suite 520 North York (GTA), Ontario M2N 6L9

Attn: Edmond Laratta, Manager, Environmental Affairs Email address: <u>elaratta@xeneca.com</u>

Re: Surface Water Quality Monitoring Program Petawawa (Big Eddy), Ontario

Dear Mr. Laratta:

This letter report summarizes the surface water monitoring program completed on May 31 and August 16, 2010 at Petawawa's Big Eddy site. It includes visual observations of each sampling event, sampling results, and conclusions.

BACKGROUND

WESA Inc. (WESA) was retained by Xeneca Power Development Inc. (Xeneca) to prepare, manage data and report on the surface water sampling events completed on May 31 and August 16, 2010. As requested by Xeneca the onsite monitoring was conducted by Ontario Resources Management Group (ORMG) in conjunction with their spring and summer sampling events. Onsite monitoring included sampling collection, water quality parameter collection and general field observations.

METHODOLOGY

A total of two sampling events (spring and summer) were conducted at four different surface water sampling locations (SW1 to SW4) at the Big Eddy site in 2010. During the sampling events, general observations and characteristics of each sampling location was assessed and recorded (i.e. water level, current, colour and odour). The surface water monitoring and sampling at the site is summarized in Table 1: Petawawa (Big Eddy) Surface Water Locations and General Observations below. Field parameters (pH, conductivity, temperature, and dissolved oxygen) were measured and recorded at each sampling location using the YSI 556 multi-probe meter. Ferrous iron was measured and recorded at each sampling location using a Ferrous Iron HACH kit. All instruments were calibrated prior to use in the field. All coordinates for each sample location were recorded using a Garmin GPS 76 instrument.

ORMG collected surface water samples using clean laboratory-supplied bottles and submitted all samples to Paracel Laboratories (Paracel) of Ottawa, Ontario for analysis. A total of 47 chemical parameters were analyzed for each sample (please note that sulfide and mercury were only analyzed in the summer event). All samples were maintained at < 4°C from the time of sampling until delivery to Paracel. Full 'chain of custody' documentation accompanied the samples from each site to Paracel and is enclosed with this document.

All field parameters and analytical laboratory results can be found in Table 2: Petawawa (Big Eddy) Surface Water Chemistry enclosed with this document. Analytical results are compared to the Ontario Provincial Water Quality Objectives (PWQO, 1994), where available.

RESULTS

The GPS coordinates and general observations made by ORMG during each sampling event can be found in Table 1 below. In all cases the water levels were relatively low, the water current was relatively moderate, the water colour was clear, and there were no odours associated with the samples.

Surface Water	UTM coordinates	General Observations					
Locations	(Zone 18N)	Water Level	Water Current	Water Colour	Water Odour		
Spring – May 31, 2010							
SW1	E324738 N5085835	low	moderate	clear	none		
SW2	E322600 N5085786	low	strong	clear	none		
SW3	E320923 N5084229	low	strong	clear	none		
Summer – August 16, 2010							
SW1	E324755 N5085844	low	moderate	clear	none		
SW2	E322613 N5085787	low	moderate	clear	none		
SW3	E320515 N5084048	low	moderate	clear	none		

Table 1: Petawawa (Big Eddy) Surface Water Locations and General Observations:

Surface water analytical results can be found in Table 2: Petawawa (Big Eddy) Surface Water Chemistry in comparison to the PWQO. Of the 47 parameters that were analyzed, a total of 28 parameters had concentrations equal to or less than the laboratory method detection limit (MDL) for the spring and summer sampling events. The parameters that had concentrations below the laboratory MDL included metals (e.g., arsenic, cadmium, chromium, mercury, nickel, zinc, etc), phosphorus (dissolved and total), phosphate, total suspended solids, sulphide, nitrate, nitrite, and carbonate alkalinity. In general, there was little variation in the concentrations between the spring and summer sampling event at each location. The sodium, calcium, magnesium, and potassium concentrations were each higher in the summer event compared to the spring event. The lower concentration of these metal salt parameters in the spring compared to the summer is likely due to a higher level of dilution from snow melt water in the spring event.

Of the 47 parameters analyzed for the surface water samples, a total of 24 have PWQO values associated with them. Of these, no parameters analyzed from Petawawa's Big Eddy site exceeded their respective PWQO values. Laboratory certificates of analysis for surface water samples collected in 2010 are enclosed with this document.

CONCLUSION

A total of four surface water samples were collected in the spring and summer of 2010 and analyzed for 47 parameters at the Petawawa Big Eddy site. The parameter concentrations were generally low, especially those associated with potential anthropogenic sources (i.e., metals). All parameter concentrations were below their associated PWQO values.

The observations and results obtained by ORMG are representative of the conditions during the site visits made on May 31 and August 16, 2010 at Petawawa's Big Eddy site. The statements made in this report are based solely on the information obtained to date as part of the above referenced assessment. The information presented herein is based on observations and laboratory testing of samples collected at specific locations. Any inferences between specific sample locations should be made with caution. WESA has used professional judgement in analyzing this information and formulating its conclusions. No other warranty, expressed or implied, as to the accuracy of the information or recommendations is included or intended in this report.

If you have any questions, or require further assistance, please feel free to contact the undersigned at your convenience.

Yours sincerely,

Mia Jakonde

Jµlia LaRonde Occupational Hygiene / Environmental Technologist

Encl.

- Table 2: Petawawa (Big Eddy) Surface Water Chemistry
- Lab Report Reference No. 1023084 dated June 07, 2010
- Lab Report Reference No. 1023084 dated July 28, 2010
- Lab Report Reference No. 1034078 dated August 23, 2010
- Lab Report Reference No. 1035081 dated August 27, 2010

Ref: CB8944-07 February 25-2011 Big Eddy LetRept.doc

Reviewed by:

Darryl Roberts, Ph.D Project Manager

www.wesa.ca

Table 2: Petawawa (Big Eddy) Surface Water Chemistry CB8944-00-07

	جا.				-			_	Γ_	_]
2	BE	Q	1		V	V	V	v	V	v	V	V	
ß	1/2n	20	0.5		<0.5	<0.5	<0 S	<0.5	\$0.5 2	<0.5	<u>05</u>	<0.5	
ব	18H	?	1		13	0	2	Ц	15	'≘	=	13	
Ferric iron	¶¶/	2	0.2		<0.1	<0.2	<0.1	<0.2	<0.1	<0.2	0	0.2	
Sulphur	T/Bm	S	0.1			1.8	1	1.7	:	1.7	1	1.7	
Sulphate	J/gm	5	-		4	5	4	4	m	4	4	4	
Phosphate	mg/L	2	1		ī	v	v	v	⊽	v	v	v	
NO2	шĝ/г	2	0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
NO3	mg/L	2	0.1		<0.1	< 0.1	<0.1	<0.1	40.1 4	<0.10	1.0	<0.1	
Chloride	шg/г	2	1		2	2	v		v	-	Ā	v	
TKN	1/8m	2	0.1		0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	
Sulfide	mg/L	2	0.02		•	<0.02	;	<0.02	:	<0.02	:	<0.02	
TSS	T/gm	2	2		m	<50*	5	<50*	\$	<50*	22	<50*	
SOT	mg/L	2	0		48	72	60	51	805	91	<40	66	
Total Dissolved Phos.	mg/L	All	0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Total Phos.	D D 2	50.0	0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
H	65.25		0.05		6.77	6.58	6.88	6.82	6.87	6.83	6.85	6.75	
Carbonate Alkalinity	mg/L	All	0		<5	<5	<5	<5	<5	<10	<5	<5	
Bicarbonate Alkalinity	TNN I	2	0		11	12	10	13	н	13	0	12	
Total	>250% J		0		11	12	10	13	=	13	0	12	Notes:
	DOUX4		MUL	Sample Date	31-May-IO	16-Aug-10	31-May-10	16-Aug-10	31-May-10	16-Aug-10	31-May-10	16-Aug-10	~
				Sample Location	LAND		5000		SW3		P/XV		

NDL MDL

Provincial
 Method
 Method
 Motalue
 Exceed
 Concentration less than the MDL
 Elevated Reporting Limits due to Limited Sample Volume
 Sample not analyzed

V * 1

WESA Inc.

Table 2: Petawawa (Big Eddy) Surface Water Chemistry CB8944-00-07

>	5			1	7		ī	1	v	1	7	;	
	י ד			Ļ			-		2		2		
5	2n -			N N	V	Ň	0	۶ ۲	00	1V	0		
M	Vgn	10		≥1¢	<10	1	<1C	V	<15	V	<10		
F	1/2n	≧ v∩		\$	Š	v	<5	₹2	<5	ŝ	< <u>5</u>		
ک	7/Bn	2 5		₹2	<5 <5	s5	ŝ	ŝ	\$ V	Ŷ	\$		
F	1/gn	50		1.0>	<0.1	<0.1	<0.1	<0.1	<0.1	1.0×	<0.1		
يد	√2n	01		28	35	28	33	27	33	27	33		
Na	J∕gn	200		1.780	2.020	1,430	1,690	1,320	1,880	1,270	1.520		
\$°	J/Bn	0.1		<0.1	<0.1	<0.1	<0.1	<0.1 <	<0.1	<0.1	<0.1		
Se .	1/gn	-		ī	٧	ī	v	ī	٧	v	۲		
×	ug/L	100		615	622	571	605	569	610	571	610		
ž	Hg/L	-		v	٢	ī	۲	۲	٧	v	٧		
Wo	Hg/L	2 -		۲	ī	v	۲	Ÿ	ī	ī	v		
Wn	T/g/I	5		-17	-21	18	20	20	50	20	26		
ž	nv.	200		1.410	1.610	1,310	1,510	1,330	1.520	1.300	1,490		
8	1/2rl	0.1		<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	0.2		
Å H	HB/L	0.1		,	<0.1		<0.1	1	<0.1	:	<0.1		
a .	300	100		128	131	131	130	137	140	126	152		
5	18/L	0.5		0.7	0.6	1.1	0.9	2.6	0.8	0.6	0.9		
8	1/20	0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
5	1 n	-		v	1	v	v	٧	۲	v	~1		
U S	2 R	100		4.250	4.990	4.030	4.830	4,050	4,900	4.020	4,650		
Cd	H81	0.1	1	<0.1	<0.1	<0.1	1.0 V	1.0>	<0.1	<0.1	<0.1		1
80 1	200	10		<10	<10	<10	2	<10 <10	0 V	۰10 ۱۵	م10		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Be	11	0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
Ba	TV I	5		19	51	18	7	61	51	61	20	lotes:	
	PWOO	MDL	Sample Date	31-May-10	6-Aug-10	31-May-10	6-Aug-10	31-May-10	6-Aug-10	31-May-10	6-Aug-10	Z	6
			Sample Location	LAND	-	SVV2	-	SW3	-	SXV4			

PWQO Provincial Water Quality MDL Method Detection Limit nv No value listed in Exceeds PWQO criteria < Concentration less than the MDL * Elevated Reporting Limits due to Limited Sample Volume ... Sample not analyzed

WESA Inc.

Table 2: Petawawa (Big Eddy) Surface Water Chemistry CB8944-00-07

				Fleld	Measurem	ents	
		Zn	Hd	Temp.	Cond.	8	Ferrous Iron
		ug/L.		D ⁰ C	uS/cm	mg/L	mg/L
	PWQO	30	6.5-8.5				
	MDL	10					
Sample Location	Sample Date	15			1		
uvo	31-May-10	<10	6.37	21.59	39	8.84	0.05
	16-Aug-10	<10	7.22	22.33	83.1	86.4	0.02
CAND	31-May-10	<10	6.37	22.46	40	8.74	0.13
7.40	16-Aug-10	<10	7.24	23.24	84.7	7.84	0.07
CIVI2	31-May-10	<10	6.11	21.68	36	8.43	0.07
	16-Aug-10	<10	1	1	;	;	1
VIN	31-May-10	<10	6.19	21.50	36	8.35	<0.02
	16-Aug-10	<10	7.04	23.75	85.6	7.4	0.02

Notes: PWQO Provincial Water Quality Objectives MDL Method Detection Limit n No value listed in PWQO Concentration list than the MDL Concentration list than the MDL Elevated Reporting Limits due to Limited Sample Volu Sample not analyzed

TRUSTED. Responsive. reliable.

SARNIA

300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com www.paracellabs.com

Subcontracted Analysis

WESA Inc. (Carp) P.O. Box 430, 3108 Carp Rd. Carp, ON K7K 1Z7 Attn: Julia LaRonde

PARACEL

LABORATORIES LTD.

OTTAWA 🔘 NIAGARA FALLS 🔘 MISSISSAUGA

Tel: (613) 839-3053 Fax: (613) 839-5376

Order Date: 01-Jun-10 Report Date: 7-Jun-10

Paracel Report No.: 1023084Client Project(s):CB8944-00-07Client PO:Reference:#10-170CoC Number:71483

Sample(s) from this project were subcontracted for the listed parameters. A copy of the subcontractor's report is attached

Paracel ID	Client ID	
1023084-01	SW-1	
1023084-02	SW-2	
1023084-03	SW-3	
1023084-04	SW-4	

Analysis

Sulfur,	water
Sulfur,	water
Sulfur,	water
Sulfur.	water

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM WWW.PARACELLABS.COM 0TTAWA 300-2319 St. Laurent älvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississaugs ON L6N 6J3 NIAGARA FALLS 5415 Morning Glory Crt Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Seinia, ON N7T ST7

CERTIFICATE OF ANALYSIS

Final Report

REPORT No. B10-15085

Caduceon Environmental Laboratories
2378 Holly Lane
Ottawa, Ontario, K1V 7P1
Tel: 613-526-0123
Fax: 613-526-1244
JOB/PROJECT NO.: 1023084
P.O. NUMBER:
WATERWORKS NO.

	Parameter:		Sulphur			
	Units:		mg/L			
	M.D.L.:	S	0.1			
	Reference Meth	od:	SM 3120			
	Date/Site Analy	zed:	04-Jun-10/O			
Client I.D.	Sample I.D.	Date Collected				24
SW-1	B10-15085-1	31-May-10	1.8			
SW-2	B10-15085-2	31-May-10	1.7			
SW-3	B10-15085-3	31-May-10	1.7			
SW-4	B10-15085-4	31-May-10	1.7	ng Market and a second and the Rest and Standard and a second second second second second second second second		

Jour hus

Gord Murphy Lab Supervisor

M.D.L. = Method Detection Limit

CADU

C.O.C.: ---

ENVIRONMENTAL LABORATORIES

Client committed. Quality assured.

Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,P-Peterborough,M-Moncton

The analytical results reported herein refer to the samples as received. Reproduction of this analytical report in full or in part is prohibited without prior consent from Caduceon Environmental Laboratories.

PARACEL |

TRUSTED. Responsive. reliable. 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8

p: 1-800-749-1947 e: paracel@paracellabs.com

www.paracellabs.com

OTTAWA 🖲 NIAGARA FALLS 🖲 MISSISSAUGA 🔘 SARNIA

Certificate of Analysis

WESA Inc. (Carp)	
P.O. Box 430, 3108 Carp Rd.	Phone: (613) 839-3053
Carp, ON K7K 1Z7	Fax: (613) 839-5376
Attn: Julia LaRonde	
Client PO:	Report Date: 28-Jul-2010
Project: CB8944-00-07	Order Date: 1-Jun-2010
Custody: 71483	Revised Report Order #: 1023084

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1023084-01	SW-1
1023084-02	SW-2
1023084-03	SW-3
1023084-04	SW-4

Approved By:

Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Client: WESA Inc. (Carp) Client PO:

Project Description: CB8944-00-07

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Alkalinity, bicarbonate	calculated from EPA 310.1 - Titration	7-Jun-10	7-Jun-10
Alkalinity, carbonate	calculated from EPA 310.1 - Titration	7-Jun-10	7-Jun-10
Alkalinity, total	EPA 310.1 - Titration	3-Jun-10	4-Jun-10
Anions	EPA 300.1 - IC	7-Jun-10	7-Jun-10
Ferric Iron	Calculation	8-Jun-10	8-Jun-10
Metals, low level	EPA 200.8 - ICP-MS	9-Jun-10	9-Jun-10
pH	EPA 150.1 - pH probe	4-Jun-10	4-Jun-10
Phosphorus, total	EPA 365.4 - Auto Colour, digestion	2-Jun-10	3-Jun-10
Phosphorus, total dissolved	EPA 365.4; IC, filtration	3-Jun-10	3-Jun-10
Solids, dissolved	EPA SM 2540C - gravimetric, filtration	3-Jun-10	4-Jun-10
Solids, total suspended	SM 2540D - Gravimetric	2-Jun-10	2-Jun-10
Total Kjeldahl Nitrogen	EPA 351.2 - Auto Colour, digestion	2-Jun-10	3-Jun-10

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 MISSISSAUGA 6845 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Samia, ON N7T 5T7

Page 2 of 8

Order #: 1023084

Report Date: 28-Jul-2010 Order Date:1-Jun-2010

Order #: 1023084

Client: WESA Inc. (Carp)

Report Date: 28-Jul-2010
Order Date:1-Jun-2010

Client PO:		Project Description: CB8944-00-07									
	Client ID Sample Date: Sample ID:	SW-1 31-May-10 1023084-01 Water	SW-2 31-May-10 1023084-02 Water	SW-3 31-May-10 1023084-03 Water	SW-4 31-May-10 1023084-04 Water						
General Inorganics			0								
Alkalinity, total	5 mg/L	11	10	11	10						
Alkalinity, bicarbonate	5 mg/L	11	10	11	10						
Alkalinity, carbonate	5 mg/L	<5	<5	<5	<5						
рН	0.05 pH Units	6.77	6.88	6.87	6.85						
Phosphorus, total	0.01 mg/L	<0.01	<0.01	<0.01	<0.01						
Phosphorus, total dissolved	0.01 mg/L	<0.01	<0.01	<0.01	<0.01						
Total Dissolved Solids	10 mg/L	48	60	805	<40						
Total Suspended Solids	2 mg/L	3	<2	<2	<2						
Total Kjeldahl Nitrogen	0.1 mg/L	0.3	0.3	0.3	0.3						
Anions											
Chloride	1 mg/L	2	<1	<1	<1						
Nitrate as N	0.1 mg/L	<0.1	<0.1	<0.1	0.1						
Nitrite as N	0.05 mg/L	<0.05	<0.05	<0.05	<0.05						
Phosphate as P	1 mg/L	<1	<1	<1	<1						
Sulphate	1 mg/L	4	4	3	4						
Metals											
Ferric Iron	0.5 mg/L	<0.1 [3]	<0.1 [3]	<0.1 [3]	0.1 [3]						
Aluminum	1 ug/L	13	12	15	11						
Antimony	0.5 ug/L	<0.5	<0.5	<0.5	<0.5						
Arsenic	1 ug/L	<1	<1	<1	<1						
Barium	5 ug/L	19	18	19	19						
Beryllium	0.5 ug/L	<0.5	<0.5	<0.5	<0.5						
Boron	10.0 ug/L	<10.0	<10.0	<10.0	<10.0						
Cadmium	0.1 ug/L	<0.1	<0.1	<0.1	<0.1						
Calcium	100 ug/L	4250	4030	4050	4020						
Chromium	1 ug/L	<1	<1	<1	<1						
Cobalt	0.5 ug/L	<0.5	<0.5	<0.5	<0.5						
Copper	0.5 ug/L	0.7	1.1	2.6	0.6						
Iron	100 ug/L	128	131	137	126						
Lead	0.1 ug/L	<0.1	<0.1	<0.1	<0.1						
Magnesium	200 ug/L	1410	1310	1330	1300						

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

0 T T AWA 300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 M I S S I S S A U G A 6645 Kitimet Rd Unit #27 Mississauga, ON L5N 6J3

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 3 of 8

Client: WESA Inc. (Carp) Client PO-

Order #: 1023084

Report Date: 28-Jul-2010 Order Date:1-Jun-2010

Client PO:		Project Description	n: CB8944-00-07		
	Client ID Sample Date Sample ID: MDL/Units	SW-1 31-May-10 1023084-01 Water	SW-2 31-May-10 1023084-02 Water	SW-3 31-May-10 1023084-03 Water	SW-4 31-May-10 1023084-04 Water
Manganese	5 ug/L	17	18	20	20
Molybdenum	1 ug/L	<1	<1	<1	<1
Nickel	1 ug/L	<1	<1	<1	<1
Potassium	100 ug/L	615	571	569	571
Selenium	1 ug/L	<1	, <1	<1	<1
Silver	0.1 ug/L	<0.1	<0.1	<0.1	<0.1
Sodium	200 ug/L	1780	1430	1320	1270
Strontium	10 ug/L	28	28	27	27
Thallium	0.1 ug/L	<0.1	<0.1	<0.1	<0.1
Tin	5 ug/L	<5	<5	<5	<5
Titanium	5 ug/L	<5	<5	<5	<5
Tungsten	10 ug/L	<10	<10	<10	<10
Uranium	0.1 ug/L	<0.1	<0.1	<0.1	<0.1
Vanadium	1 ug/L	<1	<1	<1	<1
Zinc	10 ug/L	<10	<10	<10	<10

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM

OTTAWA 300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

M I S S I S S A U G A 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N Sarnia, ON N7T 5T7

Page 4 of 8

Client: WESA Inc. (Carp) Client PO:

Project Description: CB8944-00-07

Method Quality Control: Blank

Analyte		Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit Notes
Anions	< 11		/						
Chloride		ND	1	ma/l					
Nitrate as N		ND	0.1	ma/L					
Nitrite as N		ND	0.05	ma/L					
Phosphate as P		ND	1	ma/L					
Sulphate		ND	1	mg/L					
General Inorganics				-					
Alkalinity total		ND	5	ma/l					
Alkalinity, total		ND	5	mg/L					
Alkalinity, pices ponete		ND	5	mg/L					
Phosphorus total		ND	0 01	ma/i					
Phosphorus, total dissolved		ND	0.01	ma/i					
Total Dissolved Solids		ND	10	ma/l					
Total Suspended Solids		ND	2	ma/l					
Total Kieldahl Nitrogen		ND	01 **	ma/i					
Motale			0.1						
Aluminum		ND	1	ua/l					
Antimony			0.5	ug/L					
Arsenic			1	ug/L					
Barium		ND	5	ug/L					
Bervilium		ND	0.5	ug/L					
Boron		ND	10.0	ug/L					
Cadmium		ND	0.1	ug/l					
Calcium		ND	100	ug/L					
Chromium		ND	1	ua/L					
Cobalt		ND	0.5	ua/L					
Copper		ND	0.5	ua/L					
Iron		ND	100	ug/L					
Lead		ND	0.1	ug/L					
Magnesium		ND	200	ug/L					
Manganese		ND	5	ug/L					
Molybdenum		ND	1	ug/L					
Nickel		ND	1	ug/L					
Potassium		ND	100	ug/L					
Selenium		ND	1	ug/L					
Silver		ND	0.1	ug/L					
Sodium		ND	200	ug/L					
Strontium		ND	10	ug/L					
Thallium		ND	0.1	ug/L					
Tin		ND	5	ug/L					
Titanium		ND	5	ug/L					
Tungsten		ND	10	ug/L					
Uranium		ND	0.1	ug/L					
Vanadium		ND	1	ug/L					
Zinc		ND	10	ug/L					

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Leurent Blvd. Ottawa, ON K1G 4J8 MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga. ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7 Order #: 1023084

Report Date: 28-Jul-2010 Order Date: 1-Jun-2010

Page 5 of 8

Client: WESA Inc. (Carp) Client PO:

Project Description: CB8944-00-07

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions			27.0		21 E.				
Chloride	ND	1	ma/l	ND				10	
Nitrate as N	ND	0.1	mg/L	ND				20	
Nitrite as N	ND	0.05	ma/l	ND				20	
Phosphate as P	ND	1	ma/l	ND				20	
Sulphate	3.40	1	ma/L	3.44			1.2	10	
General Inorganics									
Alkalinity, total	10.6	5	ma/i	11.0			3.5	14	
Alkalinity, bicarbonate	11	5	mg/L	11			3.5	14	
Alkalinity, carbonate	ND	5	mg/L	ND			0.0	14	
oH	6.97	0.05	oH Units	6 98			0.1	10	
Phosphorus total	2.78	0.05	mg/l	2.76			1.0	10	
Phosphorus, total dissolved	ND	0.01	ma/l	ND				10	
Total Dissolved Solids	240	10	ma/L	233			28	10	
Total Suspended Solids	10.8	2	mg/L	10.2			57	10	
Total Kjeldahl Nitrogen	17.5	1.0	mg/L	16.7			4.8	10	
Metals									
Aluminum	17.6	1	ug/L	20.7			16.3	27	
Antimony	0.55	0.5	ug/L	0,58			5.3	26	
Arsenic	10.0	1	ug/L	9.7			3.1	29	
Barium	7.8	5	ug/L	7.8			0.1	34	
Beryllium	ND	0.5	ug/L	ND				25	
Boron	256	10.0	ug/L	250			2.4	33	
Cadmium	ND	0.1	ug/L	ND				33	
Calcium	12200	100	ug/L	11700			3.8	30	
Chromium	ND	1	ug/L	ND				32	
Cobait	ND	0.5	ug/L	ND				32	
Copper	6.29	0.5	ug/L	6.09			3.3	32	
Iron	ND	100	ug/L	ND				32	
Lead	ND	0.1	ug/L	ND				32	
Magnesium	3520	200	ug/L	3460			1.7	30	
Manganese	7.0	5	ug/L	7.0			0.8	29	
Molybdenum	1.1	1	ug/L	ND				29	QR-01
Nickel	7.8	1	ug/L	7.5			3.2	29	
Potassium	664	100	ug/L	63 9			3.8	28	
Selenium	ND	1	ug/L	ND				28	
Silver	ND	0.1	ug/L	ND				28	
Sodium	4270	200	ug/L	4200			1.7	27	
Strontium	44	10	ug/L	44			0.1	27	
i nailium	ND	0.1	ug/L	ND				27	
	ND	: 5	ug/L	ND				27	
i itanium Turanten	ND	5	ug/L	ND				27	
I ungsten	ND	10	ug/L	ND				25	
Uranium .	ND	0.1	ug/L	ND				27	
Zine	1.0	1	ug/L	ND				27	
Zinc	ND	10	ug/L	ND				27	

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K16 4J8 MISSISSAUGA 6845 Kitimet Rd. Unit #27 Mississauga, ON LSN 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA t #27 123 Christina St. N. N 6J3 Sarnia, ON N7T 517 Order #: 1023084

Report Date: 28-Jul-2010 Order Date: 1-Jun-2010

Page 6 of 8

Client: WESA Inc. (Carp) Client PO:

Order #: 1023084

Report Date: 28-Jul-2010 Order Date: 1-Jun-2010

•

Project Description: CB8944-00-07

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	1153	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions										
Chloride	9.37	1	ma/L		ND	93.7	78-112			
Nitrate as N	0.93	0.1	ma/L		ND	93.0	81-112			
Nitrite as N	0.938	0.05	ma/L		ND	93.8	76-107			
Phosphate as P	4.86	1	ma/L		ND	97.2	72-131			
Sulphate	8.90	1	mg/L		ND	89.0	75-111			
General Inorganics										
Phosphorus, total	0.463	0.01	ma/l		ND	92.6	80-120			
Phosphorus total dissolved	0.400	0.01	ma/i		ND	94 1	80-120			
Total Dissolved Solids	107	10	ma/i		ND	107	75-125			
Total Suspended Solids	19.4	2	ma/i		ND	97.0	75-125			
Total Kieldahl Nitrogen	2.00	01	ma/i		ND	100	81-126			
Motolo	2.00		mg/L			100	01-120			
	20 5				ND	77.0	74.400			
Antimony	30.3		ug/L		ND	77.0	74-130			
Anumony	49.7		ug/L		ND	99.4	78-126			
Arsenic	46.1		ug/L		ND	92.2	83-119			
Sanum	45.6		ug/L		ND	91.3	83-116			
Servinum	51.3		ug/L		ND	103	72-132			
Soron	50		ug/L	22	ND	101	71-128			
Jadmium	45.7		ug/L		ND	91.4	/8-119			
Jaicium	1060		ug/L		ND	106	64-127			
	45.9		ug/L		ND	91.8	80-124			
Jobalt	46.0		ug/L		ND	92.1	78-125			
Jopper	46.1		ug/L		ND	92.2	75-123			
ron	976		ug/L		ND	97.6	66-119			
ead	45.9		ug/L		ND	91.9	77-126			
Aagnesium	963		ug/L		ND	96.3	75-131			
langanese	45.9		ug/L		ND	91.9	79-123			
/lolybdenum	45.8		ug/L		ND	91.5	82-119			
lickel	45.3		ug/L		ND	90.6	78-119			
otassium	999		ug/L		ND	99.9	70-129			
Selenium	46.5		ug/L		ND	93.1	81-125			
5ilver	45.5		ug/L		ND	91.0	70-128			
Sodium	941		ug/L		ND	94.1	67-132			
Strontium	46		ug/L		ND	91.9	88-114			
hallium	48.4		ug/L		ND	96.8	82-127			
în	44.9		ug/L		ND	89.8	75-123			
itanium	46.5		ug/L		ND	93.1	84-118			
ungsten	44.6		ug/L		ND	89.1	70-130			
Iranium	46.2		ug/L		ND	92.4	70-131			
/anadium	46.0		ug/L		ND	92.1	82-123			
linc	38		ug/L		ND	75.3	78-130			QS-02

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

0 T T AWA 300-2319 St. Laurent Bivd. Ottawa, ON K1G 4J8

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

M I S S I S S A U G A 6645 Kitimet Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christine St. N. Samia, ON N7T 5T7

Page 7 of 8

Order #: 1023084

Report Date: 28-Jul-2010 Order Date:1-Jun-2010

Client: WESA Inc. (Carp) Client PO:

Project Description: CB8944-00-07

Sample and QC Qualifiers Notes

1 QR-01 : Duplicate RPD is high, however, the sample result is less than 10x the MDL.

Spike level outside of control limits. Analysis batch accepted based on other QC included in the batch.

Ferric Iron results are based on field measurements of Ferrous Iron provided by client.

Sample Data Revisions None

2 QS-02 :

3 Z-01 :

Work Order Revisions/Comments:

Revision 1 - This report includes additional parameters.

Other Report Notes:

n/a: not applicable MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

> P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM

OTTAWA 300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

M I S S I S S A U G A 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 8 of 8

OTTAWA © NIAGARA FALLS © MISSISSA	TRU: RESI RELI UGA @	STED . PONSI ABLE) SAR	VE. NIA			Res. Drinkins Ws	lær	300- e: par	2319 St. Laure Oitawa, ON K t: 613-73 800-74 f: 613-73 acel@paracella	nt Blvd IG 4J8 I-9577 9-1947 1-9064 bs.com	Cha Nº	n of C v(lab use on 71.	ustody ^(y) 483
Client Name: WESA Inc.	Project	8894	14-0	0-0	7	Waterworks Name		Carend	192	71	THE CONTRACT	Page L o	<u>،</u> ۲
Contact Name: Julia La Ronde	Quote #	#10	-17	()		Waterworks Numb	en			4		Sample Take	n by:
Address: OS COND Rd	PO #			~		Address:			484	5.1	Print Nam	KBE	ATTY
COUDION KOA ILO	E-mail	Address:	ndef	we	saca	After hours Conta	g:	1977 - 1979 1979 - 1979	St. 1	1	Signature:	Rea	The
Telephone: @13-839-3053 ex 251	Fax:	13-	839.	53	Ho	Public Heilih Uni	i i i	24	影	12	TAT: (I-day 2-	da (ILHeg.)
Matrix Types: S-Soil/Sed. GW-Ground Water	Surface	Water	SS-Stor	m/Sanita	ry Sewer D	W-Drinking \	Water RD	W-Regi	lated Drink	ing Wa	ater P- Pai	nt A-Air	0-Other
Samples submitted under: (Indicate ONLY one) 0. Reg 153 (511) Table 0. Reg 170/03 0. Reg 318/08 CCME 0. Reg 243/07 0. Reg 319/08 0ther:	🗌 Private	e well	Type of I Location	DW Samp	e: R = Raw; T = Surface Wat	= Treated; D = D G = Ground 1	Astribution Water			Requ	ired Analy	ses	
Paracel Order Number	Matrix	Air Volume	Type of Sample	# of Containers	Samp	le Taken Time	Free / Combined Chlorine Residual mg/L	6000tc	*		Ferrous Iron	Theaut	
1 S(1)-1	Su	-	S	3	31 May 1	1240		V			0.05		
2 5(1)-2	90	-	S	3	31 May 11	1438	<u> </u>	\checkmark			0.13		
3 5(1)-3	SW	-	S	3	Zillaun	1504					0.07		
4 5(1)-4	SW		S	3	Bindayi	0 1528	-	1			0.00		
5					1011-01						х		
6						·							
7													
8	-											1.000	
9							-			-			
10		s											
Comments: A See Dalle + Shawn	P		(Big	Eda	ly)		J	Prese	rvation Verified by:	cation.	р н	Temperat	lure
Relinquished By (Print & Sign): White Reduction BSC, MB	Receive	diBy Depot				Receiver Receiver		y	J	enfied y.	de Ce		
Date/Tinte: June 1, 2010 0934	Date/T	mel.	1.45	R IS		Partome D	Oly	03		aicflu	Me June	ilio.	14:05

ChainOfCustody Rev 2.0, January 2010

Review Items

Lab Number	Analysis	Analyte	Exception
			Default Report (not modified)
			VERSION 6.04:2010
	Alkalinity, bicarbonate	(Water)	Special Units: (mg/L)
	Alkalinity, carbonate	(Water)	Special Units: (mg/L)
	Alkalinity, total	(Water)	Special Units: (mg/L)
	Aluminum (low level) ICP-MS	(Water)	Special Units: (ug/L)
	Antimony (low level) ICPMS	(Water)	Special Units: (ug/L)
	Arsenic - (low level) ICPMS	(Water)	Special Units: (ug/L)
	Barium - (low level) ICPMS	(Water)	Special Units: (ug/L)
	Beryllium - (low level) ICPMS	(Water)	Special Units: (ug/L)
	Boron - (low level) ICPMS	(Water)	Special Units: (ug/L)
	Cadmium - (low level) ICPMS	(Water)	Special Units: (ug/L)
	Calcium - (low level) ICPMS	(Water)	Special Units: (ug/L)
	Chloride by IC	(Water)	Special Units: (mg/L)
	Chromium - (low level) ICPMS	(Water)	Special Units: (ug/L)
	Cobalt - (low level) ICPMS	(Water)	Special Units: (ug/L)
	Copper - (low level) ICPMS	(Water)	Special Units: (ug/L)
	Ferric Iron - calculated	(Water)	Special Units: (mg/L)
	Ferrous Iron	(Water)	Special Units: (mg/L)
	Iron - (low level) ICPMS	(Water)	Special Units: (ug/L)
	Lead - (low level) ICPMS	(Water)	Special Units: (ug/L)
	Magnesium - (low level) ICPMS	(Water)	Special Units: (ug/L)
	Manganese - (low level) ICPMS	(Water)	Special Units: (ug/L)
	Molybdenum - (low level) ICPMS	(Water)	Special Units: (ug/L)
	Nickel - (low level) ICPMS	(Water)	Special Units: (ug/L)
	Nitrate as N by IC	(Water)	Special Units: (mg/L)
	Nitrite as N by IC	(Water)	Special Units: (mg/L)
	рH	(Water)	Special Units: (pH Units)
	Phosphate as P by IC	(Water)	Special Units: (mg/L)
	Phosphorus, total (water)	(Water)	Special Units: (mg/L)
	Phosphorus, total dissolved	(Water)	Special Units: (mg/L)
	Potassium - (low level) ICPMS	(Water)	Special Units: (ug/L)
	Selenium - (low level) ICPMS	(Water)	Special Units: (ug/L)
	Silver - (low level) ICPMS	(Water)	Special Units: (ug/L)
	Sodium - (low level) ICPMS	(Water)	Special Units: (ug/L)
	Solids, total dissolved	(Water)	Special Units: (mg/L)
	Solids, total suspended	(Water)	Special Units: (mg/L)
	Strontium - (low level) ICPMS	(Water)	Special Units: (ug/L)
	Sulfur, water	(Water)	Special Units: (% by Wt.)
	Sulphate by IC	(Water)	Special Units: (mg/L)
	Thallium - (low level) ICPMS	(Water)	Special Units: (ug/L)
	Tin - (low level) ICPMS	(Water)	Special Units: (ug/L)
	Titanium - (low level) ICPMS	(Water)	Special Units: (ug/L)
	Total Kjeldahl Nitrogen, water	(Water)	Special Units: (mg/L)
	Tungsten - (low level) ICPMS	(Water)	Special Units: (ug/L)
	Uranium - (low level) ICPMS	(Water)	Special Units: (ug/L)
	Vanadium - (low level) ICPMS	(Water)	Special Units: (ug/L)
	Zinc - (low level) ICPMS	(Water)	Special Units: (ug/L)
1007111-BS1	Zinc - (low level) ICPMS	Zinc	Exceeds lower control limit
1007111-BS1	Zinc - (low level) ICPMS	Zinc	QS-02: Spike level outside of control limits. Analysis batch
	, , , , , , , , , , , , , , , , , , , ,		accepted based on other QC included in the batch.

Review Items

Lab Number	Analysis	Analyte	Exception
1007111-DUP1	Molybdenum - (low level) ICPMS	Molybdenum	QR-01: Duplicate RPD is high, however, the sample result is less than 10x the MDL.
1023084-01	Ferric Iron - calculated		Sampled->Prepared > 7.00 days
1023084-01	Ferric Iron - calculated	Ferric Iron	Z-01: Ferric Iron results are based on field measurements of Ferrous Iron provided by client.
1023084-01	Nitrite as N by IC		Sampled->Analyzed > 7.00 days
1023084-01	Phosphate as P by IC		REV 6: Revision 1 - This report includes additional parameters.
1023084-02	Ferric Iron - calculated		Sampled->Prepared > 7.00 days
1023084-02	Ferric Iron - calculated	Ferric Iron	Z-01: Ferric Iron results are based on field measurements of Ferrous Iron provided by client.
1023084-02	Nitrite as N by IC		Sampled->Analyzed > 7.00 days
1023084-03	Ferric Iron - calculated		Sampled->Prepared > 7.00 days
1023084-03	Ferric Iron - calculated	Ferric Iron	Z-01: Ferric Iron results are based on field measurements of Ferrous Iron provided by client.
1023084-03	Nitrite as N by IC		Sampled->Analyzed > 7.00 days
1023084-04	Ferric Iron - calculated		Sampled->Prepared > 7.00 days
1023084-04	Ferric Iron - calculated	Ferric Iron	Z-01: Ferric Iron results are based on field measurements of Ferrous Iron provided by client.
1023084-04	Nitrite as N by IC		Sampled->Analyzed > 7.00 days

TRUSTED. Responsive. Reliable. 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com

www.paracellabs.com

OTTAWA 🔘 NIAGARA FALLS 🔘 MISSISSAUGA 🍥 SARNIA

Certificate of Analysis

WESA Inc. (Carp)

P.O. Box 430, 3108 Carp Rd. Carp, ON K7K 1Z7 Attn: Julia LaRonde

Client PO: Project: CB8944-00-07 Custody: 73171 Phone: (613) 839-3053 Fax: (613) 839-5376

Report Date: 23-Aug-2010 Order Date: 17-Aug-2010 Order #: 1034078

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel IDClient ID1034078-01SW-11034078-02SW-21034078-03SW-31034078-04SW-4

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Page 1 of 8

Client: WESA Inc. (Carp) Client PO:

Project Description: CB8944-00-07

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date A	nalysis Date
Alkalinity, bicarbonate	calculated from EPA 310.1 - Titration	23-Aug-10	23-Aug-10
Alkalinity, carbonate	calculated from EPA 310.1 - Titration	23-Aug-10	23-Aug-10
Alkalinity, total	EPA 310.1 - Titration	23-Aug-10	23-Aug-10
Anions	EPA 300.1 - IC	18-Aug-10	18-Aug-10
Ferric Iron	Calculation	23-Aug-10	23-Aug-10
Metals, low level	EPA 200.8 - ICP-MS	19-Aug-10	19-Aug-10
рН	EPA 150.1 - pH probe	19-Aug-10	19-Aug-10
Phosphorus, total	EPA 365.4 - Auto Colour, digestion	23-Aug-10	23-Aug-10
Phosphorus, total dissolved	EPA 365.4; IC, filtration	23-Aug-10	23-Aug-10
Solids, dissolved	EPA SM 2540C - gravimetric, filtration	17-Aug-10	19-Aug-10
Solids, total suspended	SM 2540D - Gravimetric	17-Aug-10	18-Aug-10
Sulphide	SM 4500SE - Colourimetric	17-Aug-10	17-Aug-10
Total Kjeldahl Nitrogen	EPA 351.2 - Auto Colour, digestion	23-Aug-10	23-Aug-10

OTTAWA P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM 300-2319 St. Laurent Blvd. Ottawa, ON K1G 438

WWW.PARACELLABS.COM

N IAGARA FALLS 5415 Morning Glory Crt Niegara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON LBN 6J3

SARNIA 123 Christina St. N. Samis, ON N7T 5T7

Page 2 of 8

Order #: 1034078

Report Date: 23-Aug-2010 Order Date: 17-Aug-2010

Order #: 1034078

Client: WESA Inc. (Carp)

Report Date: 23-Aug-2010 Order Date: 17-Aug-2010

Client PO:		Project Descript	ion: CB8944-00-07		
	Client ID: Sample Date: Sample ID: MDI /Units	SW-1 16-Aug-10 1034078-01 Water	SW-2 16-Aug-10 1034078-02 Water	SW-3 16-Aug-10 1034078-03 Water	SW-4 16-Aug-10 1034078-04 Water
General Inorganics			1		
Alkalinity, total	5 mg/L	12	13	13	12
Alkalinity, bicarbonate	5 mg/L	12	13	13	12
Alkalinity, carbonate	5 mg/L	<5	<5	<10	<5
pH	0.05 pH Units	6.58	6.82	6.83	6.75
Phosphorus, total	0.01 mg/L	<0.01	<0.01	<0.01	<0.01
Phosphorus, total dissolved	0.01 mg/L	<0.01	<0.01	<0.01	<0.01
Total Dissolved Solids	10 mg/L	72	51	91	66
Total Suspended Solids	2 mg/L	<50 [1]	<50 [1]	<50 [1]	<50 [1]
Sulphide	0.02 mg/L	<0.02	<0.02	<0.02	<0.02
Total Kjeldahl Nitrogen	0.1 mg/L	0.3	0.3	0.3	0.3
Anions					
Chloride	1 mg/L	2	1	1 1	<1
Nitrate as N	0.1 mg/L	<0.1	<0.1	<0.1	<0.1
Nitrite as N	0.05 mg/L	<0.05	<0.05	<0.05	<0.05
Phosphate as P	1 mg/L	<1	<1	<1	<1
Sulphate	1 mg/L	5_	4	4	4
Metals					
Ferric Iron	0.2 mg/L	<0.2	<0.2	<0.2	0.2
Aluminum	1 ug/L	10	11	10	13
Antimony	0.5 <mark>ug/L</mark>	<0.5	<0.5	<0.5	<0.5
Arsenic	1 ug/L	<1	<1	<1	<1
Barium	5 ug/L	21	21	21	20
Beryllium	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Boron	10.0 ug/L	<10.0	<10.0	<10.0	<10.0
Cadmium	0.1 ug/L	<0.1	<0.1	<0.1	<0.1
Calcium	100 ug/L	4990	4830	4900	4650
Chromium	1 ug/L	<1	<1	<1	<1
Cobalt	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Copper	0.5 ug/L	0.6	0.9	0.8	0.9
Iron	100 ug/L	131	130	140	152
Lead	0.1 ug/L	<0.1	0.1 \prec i 🛶 i	<0.1	0.2
Magnesium	200 ug/L	1610	1510	1520	1490
Manganese	5 ug/L	21	20	20	26

P: 1-800-749-1947 Ei paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA -300-2319 St. Laurent Blvd Ottawa, ON K1G 4J8 MISSISSAUGA 6645 Kitimat Rd. Unit #27 Missiasauga, ON LBN 6J3

NIAGARA FALLS 5415 Morning Glory Crt Nisgare Falls, ON L2J 0A3

SARNIA t23 Christina St. N. Sarnis, ON N7T 5T7

Page 3 of 8

Order #: 1034078

Report Date: 23-Aug-2010 Order Date: 17-Aug-2010

Client: WESA Inc. (Carp)

Client PO:		Project Description: CB8944-00-07								
	Client ID: Sample Date: Sample ID: MDL/Units	SW-1 16-Aug-10 1034078-01 Water	SW-2 16-Aug-10 1034078-02 Water	SW-3 16-Aug-10 1034078-03 Water	SW-4 16-Aug-10 1034078-04 Water					
Metais (continued)				-						
Molybdenum	1 ug/L	<1	<1	<1	<1					
Nickel	1 ug/L	<1	<1 <1	<1	<1					
Potassium	100 ug/L	622	605	610	610					
Selenium	1 ug/L	<1	<1	<1	<1					
Silver	0.1 ug/L	<0.1	<0.1	<0.1	<0.1					
Sodium	200 ug/L	2020	1690	1880	1520					
Strontium	10 ug/L	35	33	33	33					
Thailium	0.1 ug/L	<0.1	<0.1	<0.1	<0.1					
Tin	5 ug/L	<5	<5	<5	<5					
Titanium	5 ug/L	<5	<5	<5	<5					
Tungsten	10 ug/L	<10	<10	<10	<10					
Uranium	0.1 ug/L	<0.1	<0.1	<0.1	<0.1					
Vanadium 1001	1 ug/L	<1	<1	···· <1 , ^{*···}	<1					
Zinc	10 ug/L	<10	<10	<10	<10					

P: 1-800-749-1947 E: paracel@paracellabs.com www.paracellabs.com OTTAWA 300-2319 St. Laurent Blvd Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

 MISSISSAUGA
 SAF

 6645 Killmat Rd. Unit #27
 123

 Mississauge, ON L6N 6J3
 Sam

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 4 of 8

Order #: 1034078

Report Date: 23-Aug-2010 Order Date: 17-Aug-2010

Client: WESA Inc. (Carp)

Client PO:

Project Description: CB8944-00-07

Method Quality Control: Blank

Analyte	Result	Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	10 10	Notes
Anions								F		
Chloride	ND	1	mg/L							
Nitrate as N	ND	0.1	mg/L							
Nitrite as N	ND	0.05	mg/L							
Phosphate as P	ND	1	mg/L							
Sulphate	ND	1	mg/L							
General Inorganics										
Alkalinity, total	ND	5	ma/L							
Phosphorus, total	ND	0.01	ma/L							
Phosphorus, total dissolved	ND	0.01	ma/L							
Total Dissolved Solids	ND	10	ma/l							
Total Suspended Solids	ND	2	mg/L							9
Sulphide	ND	0.02	ma/l							
Total Kieldabl Nitrogen	ND	0.02	ma/l							
Motolo	ND	0.1	ing/L							
IVICLAID	ND	1								
Antimony	ND	0.5	ug/L							
Amenio	ND	0.5	ug/L							
Arsenic	ND	1	ug/L							
Banum	ND	5	ug/L							
Beryilum	ND	0.5	ug/L							
Boron	ND	10.0	ug/L							
	ND	0.1	ug/L							
Calcium	ND	100	ug/L							
Chromium	ND	1	ug/L							
Cobalt	ND	0.5	ug/L							
Copper	ND -	0.5	ug/L							
Iron	ND	100	ug/L							
Lead	ND	0.1	ug/L							
Magnesium	ND	200	ug/L							
Manganese	ND	5	ug/L							
Molybdenum	ND	1	ug/L							
Nickel	ND	1	ug/L							
Potassium	ND	100	ug/L							
Selenium	ND	1	ug/L							
Silver	ND	0.1	ug/L							
Sodium	ND	200	ug/L							
Strontium	ND	10	ug/L							
Thallium	ND	0.1	ug/L							
Tin	ND	5	ug/L							
Titanium	ND	5	ug/L							
Tungsten	ND	10	ug/L							
Uranium	ND	0.1	ug/L							
Vanadium	ND	1	ug/L							
Zipc	ND	10	ug/l							

P: 1-800-749-1947 E: Paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300-2319 St. Laurent Blvd Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falis, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississaugo, ON LBN 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 5 of 8

Order #: 1034078

Report Date: 23-Aug-2010 Order Date: 17-Aug-2010

Client: WESA Inc. (Carp) Client PO:

Project Description: CB8944-00-07

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions					8		i	Y	
Chloride	236	1	mg/L	236			0.1	10	
Nitrate as N	10.5	0.1	mg/L	10.5			0.1	20	
Nitrite as N	ND	0.05	mg/L	ND				20	
Phosphate as P	ND	1	mg/L	ND				20	
Sulphate	131	1	mg/L	131			0.5	10	
General Inorganics									
pH	6.61	0.05	pH Units	6.58			0.5	10	
Phosphorus, total	ND	0.01	mg/L	ND				10	
Phosphorus, total dissolved	ND	0.01	mg/L	ND				10	
Total Dissolved Solids	280	20	mg/L	285			1.7	10	
Total Suspended Solids	ND	2	mg/L	ND				10	
Sulphide	ND	0.02	mg/L	ND				10	
Total Kjeldahl Nitrogen	0.34	0.1	mg/L	0.32			4.9	10	
Metals									
Aluminum	8.6	1	ug/L	8.7			0.9	27	
Antimony	ND	0.5	ug/L	ND				26	
Arsenic	ND	1	ug/L	ND				29	
Banum	19.8	5	ug/L	19.5			1.8	34	
Beryllium	ND	0.5	ug/L	ND				25	
Boron	ND	10.0	ug/L	ND				33	
Cadmium	ND	0.1	ug/L	ND				33	
Calcium	4300	100	ug/L	4370			1.6	30	
Chromium	ND	1	ug/L	ND				32	
Cobalt	ND	0.5	ug/L	ND				32	
Copper	0.97	0.5	ug/L	1.01			3.5	32	
Iron	ND	100	ug/L	ND				32	
Lead	ND	0.1	ug/L	ND				32	
Magnesium	1390	200	ug/L	1410			1.7	30	
Manganese	15.0	5	ug/L	15.2			1.4	29	
Molybdenum	ND	1	ua/L	ND				29	
Nickel	ND	1	ua/L	ND				29	
Potassium	605	100	ua/L	620			2.4	28	
Selenium	ND	1	ua/L	ND				28	
Silver	ND	0.1	ua/L	ND				28	
Sodium	1330	200	ua/L	1370			3.1	27	
Strontium	32	10	ua/L	32			0.7	27	
Thallium	ND	0.1	ug/L	ND			•	27	
Tin	ND	5	ug/L	ND				27	
Titanium	ND	5	ug/L	ND				27	
Tungsten	ND	10	ug/L	ND				25	
Uranium	ND	0.1	ug/L	ND				27	
Vanadium		1	ug/L					27	
Zine		10	ug/L					27	
		10	uy/L	ND				21	

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM OTTAWA 300-2319 St. Laurent Bivd Ottawa, ON K1G 4J8 MISSISSAUGA

6645 Kitimat Rd, Unit #27 Missiaseuga, ON L6N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niegare Falts, ON L2J 0A3

WWW.PARACELLABS.COM

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 6 of 8

Client: WESA Inc. (Carp)

Client PO:

Project Description: CB8944-00-07

Method Quality Control: Spike Reporting Source %REC RPD Analyte Result Limit Units %REC Limit RPD Notes Result Limit Anions Chloride 8.49 mg/L ND 84.9 78-112 1 Nitrate as N 1.02 0.1 mg/L ND 102 81-112 Nitrite as N 0.864 0.05 mg/L ND 86.4 76-107 Phosphate as P 4.48 1 mg/L ND 89.6 72-131 Sulphate 8.95 1 mg/L ND 89.5 75-111 **General Inorganics** Phosphorus, total 0.487 0.01 mg/L ND 97.3 80-120 Phosphorus, total dissolved 0.49 0.01 mg/L ND 97.3 80-120 Total Dissolved Solids 104 10 mg/L ND 104 75-125 Total Suspended Solids 22.0 2 mg/L ND 110 75-125 Sulphide 0.52 0.02 79-115 mg/L ND 104 Total Kjeldahl Nitrogen 2.01 81-126 0.1 mg/L ND 101 Metals Aluminum 48.8 ug/L ND 97.6 74-130 Antimony 52.5 ug/L ND 105 78-126 Arsenic 49.8 ug/L ND 99.5 83-119 Barium 50.0 ND 100 ug/L 83-116 Beryllium 43.4 ND 86.7 ug/L 72-132 Boron 45 ND 89.6 ug/L 71-128 Cadmium 48.9 ug/L ND 97.9 78-119 Calcium 1160 ug/L ND 116 64-127 Chromium 51.3 ug/L ND 103 80-124 Cobalt 50.9 ND 102 ug/L 78-125 Copper 51.4 103 ug/L ND 75-123 Iron 1170 ug/L ND 66-119 117 Lead 52.7 ND 105 ug/L 77-126 Magnesium 1000 ug/L ND 100 75-131 50.6 Manganese ug/L ND 101 79-123 Molybdenum 49.1 ug/L ND 98.2 82-119 Nickel 50.5 ug/L ND 101 78-119 Potassium 983 ug/L ND 98.3 70-129 Selenium 51.6 ug/L ND 103 81-125 Silver 48.2 ug/L ND 96.3 70-128 Sodium 964 ug/L ND 96.4 67-132 Strontium 50 ug/L ND 100 88-114 Thallium 59.5 ug/L ND 119 82-127 Tin 49.7 ug/L ND 99.3 75-123 Titanium 51.6 ug/L ND 103 84-118 Tungsten 48.2 ug/L ND 96.4 70-130 Uranium 50.0 ND 99.9 ug/L 70-131 Vanadium 50.9 ND ug/L 102 82-123 Zinc 50 ug/L ND 100 78-130

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300-2319 St. Laurent Blvd Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Cri Niagara Fails, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd, Unit #27 Mississauga, ON L6N 6J3 SARNIA 123 Christina St. N. Samia, ON N7T 5T7

Page 7 of 8

Order #: 1034078

Report Date: 23-Aug-2010 Order Date: 17-Aug-2010

Client: WESA Inc. (Carp)

Client PO:

Project Description: CB8944-00-07

Sample and QC Qualifiers Notes

1 - GEN01 : Elevated Reporting Limits due to limited sample volume.

Sample Data Revisions

None

Work Order Revisions/Comments: None

Other Report Notes:

n/a: not applicable

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery.

RPD: Relative percent difference.

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM WWW.PARACELLABS.COM OTTAWA 300–2319 St. Laurent Bivd Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Nisgara Falls, ON L2J 0A3

 MISSISSAUGA
 SARNIA

 6645 Kitimat Rd. Unit #27
 123 Christing St. N.

 Mississeuga. ON L6N 6J3
 Sarnia, ON N7T 577

Page 8 of 8

Order #: 1034078

Report Date: 23-Aug-2010 Order Date: 17-Aug-2010

COPARALEL LABORATORIES LTD. OTTAWA © NIAGARA FALLS © MISSI	RES REL SSAUGA (PONS IABLE SAF	IVE .					300-2319 Ottav	St. Laurent Blvd wa, ON K1G 4J8 1: 613-731-9577 800-749-1947 f: 613-731-9064	Chain	1 of Custo (lab use only) 7 24 7 4	dy
Client Name: a	1.5.1			-		Reg. Drinking Wa	ıler	e: paraceiræ	paracellabs.com		TOTAL	
WESH Inc.	Project	Rel	3894	4-00	50-07	Waterwörks Name:		h-bansa a		Pa	age of	21.1
Contact Name Julia Lakondo	Quote	10	-17	0		Waterworks Numb	er;	Semale Taken bu				
Address: 3108 Caup Rd	PO #			<u> </u>	-	Address:		Print Name:	mpre raken bj,			
Care ON KOALLO	E-mail	Address:	and i	0		After hou Conta	ct:		and di Anisi i Chinastriation	Bog L.	ADRANCHO	2
Telephone: 212-229 2052	Fax:	Jur	oncu	CUCUESA, Ca			H H			pop	Athale	2
Matrix Types: S-Soil/Sed. GW-Ground Water	W. Jurface	Water	- 839	1- 52	576	DW D. I.			NUR SALLA	TAT: []]	I-day 2-da Are	:g)
amples submitted under: (Indicate ONLY one)	Bullace	Walci	33-310	DIE C.	ary sewer	DW-Drinking V	Vater RI	W-Regulated	Drinking Wa	ter P-Paint	A-Air O-Other	٢
O. Reg 153 (511) Table O. Reg 170/03 O. Reg 3 CCME O. Reg 243/07 O. Reg 319/08 OO	18/08 🗍 Privat ther:	e well	Location	Types S	= Surface Wa	I = 1 reated; $D = Dater G = Ground V$	istribution Vater		Requi	red Analyse	S	
Paracel Order Number			2						6			
1034078	Matrix	ir Volume	e of Sampl	^c Containen	Sarr	iple Taken	r'/ Combined rine Residual mg/L	1130	CLC	2det.		
Sample ID / Location Name		<	Typ	# 01	Date	Time	Free	27	59	(A)		
1 S(1)-1	SUI		S	u	16.1.0	la and			45-	25		
2 SUD-2	01.1		12		10/00/	10 YILAM			sh			
2 911 2	SU		2	4	16/08/1	0 10:00 AM	-	$\sqrt{2}$	107			
<u> </u>	SW	-	S	4	16/08/1	010;30,4	-	V	,00			
4 50-4	SW	-	S	4	16/08/	10 11:00 AM	-		.02		1	
5		in the second			1 1	1.5						-
6												
7					1							_
8												
9		5										
10												
Comments:			1	Di	AE	Idus		Prostrout	Vanification			(1 ⁹ .)
see Dule o Shawn	M		(DI	SEC	ray)		Verified by		er en op	remperature	-
(Industried by (ITINI & Sign):	A(4 D.	4 4	16	4 . E	· Quint	ab Use Onl	5 s. 5		17	A CONTRACTOR	
In planam rid	Driver	o By	TRY			Recited	No.	. 9	Venified	XM	1	3.0
ate/Time: 7/18/10 10/0	Direati	nes		1 1	к. 	Dietine	TH		Date	1 DE	1 the	12.4 T
						1	-	Contra Contra	and the second s	+ 60	11.110	13

300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8

p: 1-800-749-1947 e: paracel@paracellabs.com

www.paracellabs.com

OTTAWA 🔘 NIAGARA FALLS 🔘 MISSISSAUGA 🏾 🔘 SARNIA

Certificate of Analysis

WESA Inc. (Carp)

P.O. Box 430, 3108 Carp Rd. Carp, ON K7K 1Z7 Attn: Julia LaRonde

Client PO: Project: CB8944-00-07 Custody: 73171 Phone: (613) 839-3053 Fax: (613) 839-5376

Report Date: 27-Aug-2010 Order Date: 24-Aug-2010 Order #: 1035081

This Certificate of Analysis contains analytical data applicable to the following samples submitted:

 Paracel ID
 Client ID

 1035081-01
 SW-1

 1035081-02
 SW-2

 1035081-03
 SW-3

 1035081-04
 SW-4

Approved

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Client: WESA Inc. (Carp) Client PO:

Project Description: CB8944-00-07

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Mercury	EPA 245.1 - Cold Vapour AA	25-Aug-10	25-Aug-10

Sample Data Revisions

None

Work Order Revisions/Comments:

None

Other Report Notes:

n/a: not applicable MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

> P: 1-800-749-1947 E: Paracel@Paracellabs.com WWW.PARACELLABS.com

OTTAWA 300-2319 St Laurent Bivd Ottawa, ON K16 4J8 MISSISSAUGA 6845 Kitmat Rd, Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON 12J 0A3

 SARNIA

 7
 123 Christina St. N.

 3
 Sarnia, ON N7T BT7

LOA3

Page 2 of 3

Order #: 1035081

Report Date: 27-Aug-2010 Order Date:24-Aug-2010

Order #: 1035081

1. Sec. 1. Sec

Report Date: 27-Aug-2010 Order Date: 24-Aug-2010

Client: WESA Inc. (Carp) Client PO:

Project Description: CB8944-00-07

Sample Results

Mercury			Matrix: Wate Sample Date: 16-Aug-10						
Paracel ID	Client ID	Units	MDL	Result					
1035081-01	SW-1	ug/L	0.1	<0.1					
1035081-02	SW-2	ug/L =	0.1	<0.1					
1035081-03	SW-3	ug/L	0.1	<0.1					
1035081-04	SW-4	ug/L	0.1	<0.1					

Laboratory Internal QA/QC

Analyte	Result	Reporting Limit		Units	Source Result	%REC	%REC Limit	RPD	RPD Llmit	Notes
Matrix Blank					111.1		21 5 L			-
Mercury	ND	0.1		ug/L						
Matrix Duplicate						112 11		1111		
Mercury	ND	0.1	I	ug/L	ND				20	
Matrix Spike		J. 10								
Mercury	3.88	0.1		ug/L	ND	129	78-137			

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM WWW.PARACELLABS.COM OTTAWA 300-2319 St. Laurent Blvd Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory CrL Niagere Fells, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON LSN 6J3 SARNIA 123 Christins St. N. Sarnio, ON N7T BT7

Page 3 of 3

Dale Robertson

Stephanie Coleman (scoleman@paracellabs.com) Donna Bloom WESA Project CB89	
To: Cc: Subject:	

Julie ask that analyze for mercury in all the water samples submitted for this project. They include the following 4 work orders:

1033126, 1033127, 1034078, 1034079 Augio Augy Mugile Augile (Jample date) Log each group of samples into a separate, new work order.

Dale Robertson, B.Sc. <u>www.paracellabs.com</u>

Project CB89 _ Sw4 11 1-1-1 11 1845150. 95590%5146. 85114816. ں ر 2 WESA GPARACEL - 335 - 933 - 933

Hutchinson

Environmental Sciences Ltd.

Big Eddy Hydroelectric Generating Facility

2012 Baseline Water Quality and Fish Tissue Mercury

Prepared for: Xeneca Power Development Ltd. Job #: J130003

May 7, 2013

3-1 Taylor Road, Bracebridge, ON P1L 1S6 ph: 705-645-0021

May 7, 2013

Project No.: J130003

Mr. Ed Laratta Manager, Environmental Programs and Approvals Xeneca Power Development Inc. 5255 Yonge Street, Suite 1200 Toronto, ON M2N 6P4

Re: Big Eddy Hydroelectric Generating Facility – Draft 2012 Baseline Water and Fish Tissue Mercury

Dear Mr. Laratta,

Please find enclosed our draft 2012 baseline fish and water quality report for Xeneca Power Development's Big Eddy hydroelectric generating facility, proposed for the Petawawa River adjacent to Petawawa, Ontario.

The report presents the reference concentrations of mercury in large fish before facility development and a discussion on mercury dynamics and hydropower in Ontario. Year one of pre-development water quality information is also presented and interpreted; a second year of water quality monitoring and first year of forage fish sampling will be conducted in 2013 to complete the baseline sampling program. This report will be updated with the results of the 2013 field program in late 2013 or early 2014.

The baseline work reported herein was conducted according to the recommendations of the Ontario Ministry of the Environment (MOE) document "From Class EA to Permit to Take Water: A Guide to Understanding the Ministry of the Environment's Technical Requirements for Waterpower" (Draft - January, 2012) and discussions with the MOE on application of the recommendations to the Big Eddy project.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Thank you for the opportunity to conduct this work for Xeneca Power Developments Ltd.

Sincerely,

Hutchinson Environmental Sciences Ltd.

Jusons

Brent Parsons, M.Sc. brent.parsons@environmentalsciences.ca

Disclaimer

The data presented in this report were provided to Hutchinson Environmental Sciences Ltd. (HESL) for reporting and interpretation by other consultants working for Xeneca. HESL has prepared this report with the data provided, under the assumption that all relevant procedures for sampling and quality control were followed in the sampling process.

Hutchinson Environmental Sciences Ltd.
Executive Summary

Water quality and fish sampling were conducted in 2012 at Xeneca's proposed hydroelectric facility on the Petawawa River adjacent to Petawawa, Ontario, at the present day location of the Big Eddy Rapids. The 2012 water quality sampling represented the first year of a two year program. Large fish were collected in 2012 and forage fish will be collected in 2013 to fully describe the baseline conditions of mercury in fish at the proposed facility. The 2012 baseline report will be updated with 2013 water quality and mercury in fish data, in late 2013 or early 2014.

Impounding rivers can change their water quality through warming due to decreased water flow and increased surface area exposed to sun, changes to water chemistry from water contact with newly flooded soil and changes in flow, as well as increases in oxygen demand and changes in microbial activity in the flooded soil. Typically, water quality has a very rapid response to inundation, changing quickly and then stabilizing within a few years. Therefore, it is important to establish a pre-development reference of water quality from which to compare the post-development conditions, especially during early operation when the changes to water and the potential for adverse impacts are the highest.

Impoundments may also enhance the methylation of mercury in surface water through flooding. Mercury concentrations in fish may increase rapidly after impoundment and then decrease and stabilize in subsequent years as observed in experimental inundation in Ontario and in hydroelectric projects in Quebec. Methyl mercury may biomagnify within the food chain and can pose a health concern to humans and wildlife that consume fish. The rate of mercury accumulation in fish depends on a variety of factors including fish size, diet and trophic position, as well as site-specific factors such as the type of terrain flooded, hydraulic residence time and water level fluctuation. In some cases fish accumulate mercury at higher rates immediately downstream of hydroelectric facilities because the turbines injure some fish passing through the facility and make them more easily available as food for fish downstream, encouraging piscivory and increasing mercury bioaccumulation rates.

Research is sparse on small-scale projects like Big Eddy which has a relatively small area of inundation and rapid flows relative to large impoundments such as those in northern Quebec and Ontario. The lack of data makes desk top predictions of mercury generation and bioaccumulation difficult and unreliable. However, site-specific factors including type of terrain, hydraulic residence time and water level fluctuation can be used to identify site-specific sensitivities to mercury accumulation. As the operating regime for the facility is established, these factors can refine post-development monitoring to target the periods of highest sensitivity, and provide valuable data to the operator and the Ontario Ministry of the Environment (MOE) on mercury dynamics in small-scale impoundments.

Baseline sampling establishes a reference condition of water quality and mercury in fish prior to facility development which can be used for comparison post-development. This, plus upstream-downstream water quality comparison in post-development monitoring, will allow facility-related impacts to be assessed. The baseline program reported herein was conducted according to recommendations in the draft MOE document titled "From Class EA to Permit to Take Water: A Guide to Understanding the Ministry of the Environment's Technical Requirements for Waterpower" (January, 2012), discussions with the MOE on application of the recommendations and documentation in the sampling program design (HESL 2012).

畿

In 2012 water quality samples were collected during each of the river's three open water flow periods (i.e., during each of the waning portion of the spring freshet, summer low flow and the fall increasing flow) and documented the water quality during these distinctly different flow regimes. The water quality samples were analyzed for parameters which indicate the general water chemistry in the river (i.e., temperature, dissolved oxygen, pH, conductivity, alkalinity, major ions, organic carbon, suspended solids and nutrients) as well as total metals, including mercury and methyl mercury, which can have adverse toxic effects at elevated concentrations.

Year 1 of the baseline water quality monitoring indicates that the Petawawa River in the project area has very good water quality, typical of a northern Canadian Precambrian Shield river with few contaminant sources in its watershed. The water quality is summarized as follows:

- Low total suspended solids, dissolved organic carbon, metals and nutrient concentrations, with all parameter concentrations except pH well below the Ontario Provincial Water Quality Objectives (PWQOs); and
- Poorly buffered and slightly acidic.

The river's water quality is linked to its seasonal flows, indicated by increased suspended sediments and associated adsorbed metals and nutrients during high spring and fall flows. Following hydropower development, the river's water quality could be affected as follows:

- Increased suspended solids, and associated adsorbed nutrients and metals if the operating regimes increase sediment movement in the river. The river may be especially sensitive to increases in these parameters during spring and fall when it has a naturally higher base load. Conversely, impoundment may allow some settling of particulate matter immediately behind the dams;
- Methyl mercury concentrations could increase in water and fish independently of suspended sediment as a result of water impoundment; and,
- Dissolved oxygen concentrations may decrease if water temperatures warm from impoundment. Decreased turbulent flow, changes in aquatic plant communities and sediment weathering may also reduce dissolved oxygen. A decrease in dissolved oxygen may be most pronounced in the summer months when water temperatures are the highest and night-time plant respiration consumes oxygen.

Water quality monitoring will be conducted on the same schedule in 2013 to confirm the baseline conditions. The program will be repeated following development and will include monitoring during the facility's peak daily flows to monitor any associated sediment movement. Dissolved oxygen monitoring will be conducted in the early morning when it is typically lowest due to overnight plant respiration.

Large fish size, diet and trophic position variables were partly controlled during baseline sampling through the preferential sampling of Channel Catfish (*Ictalurus punctatus*) from a specific size class, to aid in determining the appropriate range in pre-development mercury concentrations. Channel Catfish were substituted for large piscivorous fish because population studies in 2011 showed that it would be difficult to collect a sufficient number of piscivorous fish in the study area. However, Channel Catfish were easily collected and were recommended as an alternative species for mercury monitoring, and approved as an

alternative species by MOE on the basis of a literature search completed by HESL in 2012¹, providing: Channel Catfish > 400 mm in length were used because larger fish include more fish in their diet and thus bioaccumulate mercury at faster rates.

Baseline fish monitoring indicated that total mercury concentrations in large fish were relatively high when compared to various consumption guidelines. No comparisons were made between sites because the proposed facility will operate with a 'run of the river' flow regime and will not restrict fish passage so a before vs. after comparison on the same site will be made post-construction. Following development, mercury concentrations are expected to increase in forage and predator fish based on the results of previous hydroelectric developments in northern Ontario, Quebec and Manitoba. Therefore it is important to note that:

- 1. Mercury concentrations often occur independent of impacts associated with hydroelectric development; and,
- 2. Mercury in fish should continue to be monitored following development as the mercury concentrations in some fish at Big Eddy Rapids approach or exceed fish consumption guidelines.

Forage fish sampling will be completed in 2013 and will provide additional insight into the dynamics of mercury accumulation in that tropic level, the proportion of methyl mercury in total mercury and mercury concentrations in fish with higher exposure to the project area.

¹ Hutchinson Environmental Sciences Ltd. Technical Memorandum – Hg Accumulation in Channel Channel Catfish. April 9, 2012.

Table of Contents

Transmittal Letter Signatures Executive Summary

1	Introd	uction	1					
2	Facilit	y Description	1					
3	Background							
	3.1	Possible Changes to Water Quality Following Impoundment	3					
	3.2	Mercury Bioaccumulation	3					
	3.3	Regulatory Context	4					
4	Water	Quality and Fish Sampling Programs	5					
	4.1	Objectives	5					
	4.2	Water Sampling	5					
		4.2.1 Seasonal Sampling	6					
		4.2.2 Sample Locations – Baseline	7					
		4.2.3 Sample Locations – Post-Development	7					
		4.2.4 Duplicate Samples 1	10					
		4.2.5 Sample Collection – Methods 1	10					
		4.2.6 Analysis	10					
	4.3	Fish Sampling1	1					
		4.3.1 Sampling Intervals 1	12					
		4.3.2 Targeted Fish 1	12					
		4.3.3 Annual Timing of Sample Events 1	12					
		4.3.4 Sample Locations – Baseline 1	13					
		4.3.5 Sample Locations – Post-Development 1	13					
		4.3.6 Sampling Methods 1	14					
		4.3.7 Analysis	14					
5	2012 E	aseline Results1	4					
	5.1	Water Quality1	4					
		5.1.1 Sampling Dates1	14					
		5.1.2 Locations	14					
		5.1.3 Analytical Results1	14					
		5.1.4 Quality Assurance	20					
	5.2	Fish	21					
		5.2.1 Sampling Dates	21					
		5.2.2 Locations	21					
		5.2.3 Description of Catch	21					
		5.2.4 Analytical Results	21					
		5.2.5 Mercury Consumption Guidelines	24					
6	Discus	ssion and Conclusions2	25					
	6.1	Water Quality	25					
	6.2	Mercury in Fish	26					
		-						

7	Closing	26
8	References	27

List of Figures

Figure 1. The location of the proposed Big Eddy hydroelectric facility on the Petawawa River	2
Figure 2. The layout of the proposed Big Eddy hydroelectric facility and the extent of inundation	2
Figure 3. The location of the PWQMN station downstream of the proposed facility	6
Figure 4. The 1915 to 2011 mean daily discharge hydrograph for the Petawawa River	7
Figure 5. The baseline and post-development water sampling locations	8
Figure 6. The baseline and post-development fish sampling locations	13
Figure 7. Seasonality of selected 2012 baseline monitoring parameters.	16
Figure 8. Relational plots of large fish weight and length vs. total mercury concentrations.	22

List of Tables

Table 1.	Post-development water sampling locations.	9
Table 2.	2012 water quality sampling dates.	. 14
Table 3.	The 2012 median laboratory-derived concentrations of all measurable water quality parameter	ters
in the pro	oject area	. 15
Table 4.	2012 baseline water quality results: field parameters	. 17
Table 5.	2012 baseline water quality results: anions and nutrients	. 18
Table 6.	Baseline Water Quality Results: Metals.	. 19
Table 7.	A comparison of ORMG field measurements collected on November 20, 2012 and the histor	ical
range of	parameter values at the downstream PWQMN station.	20
Table 8.	Baseline large fish physical summary statistics.	21
Table 9.	Summary of baseline large fish analytical results.	21
Table 10	Large fish analytical results for baseline sampling	23
Table 11	1. Number and percentage of large fish with Mercury concentrations that exceeded mercenter and percentage of large fish with Mercury concentrations that exceeded mercenter and the second	cury
consump	tion guidelines	24

Appendices

Appendix A. Technical Memorandum - Mercury Accumulation in Channel Catfish Appendix B. Laboratory certificates of analysis Appendix C. Field data sheets

1 Introduction

Water quality and fish sampling were conducted in 2012 at Xeneca's proposed hydroelectric facility on the Petawawa River adjacent to Petawawa, Ontario, at the present day location of the Big Eddy Rapids (the facility). The 2012 water quality sampling represented the first year of a two year program. Large fish were collected in 2012 and forage fish will be sampled in 2013 to fully describe the baseline conditions of mercury concentrations in fish at the proposed facility. Forage fish sampling was attempted by Ontario Resources Management Group (ORMG) in 2012 but they were unable to complete the collection because of equipment failure and vandalism.

The water quality in the river hydraulically connected to the facility may change following development and the mercury dynamics in the aquatic system may increase the uptake of mercury by fish. To quantify change, post-development water quality conditions will be compared to pre-development conditions (i.e., the environmental baseline). The post-development assessment of change will be fine-tuned to account for natural changes in the aquatic system (unrelated to hydropower development) by collecting reference water quality samples upstream of the area which are not impacted by the project and thus help to infer natural variability. This report describes the results, rationale and regulatory context of the predevelopment reference sampling conducted at Big Eddy Rapids on the Petawawa River. The report presents:

- 1. A description of the water quality and fish sampling programs, including the rationale for the programs and their regulatory context;
- Year 1 results from the baseline water quality program which was developed in consultation with the Ontario Ministry of the Environment (MOE). The second year of assessment will be conducted in 2013; in late 2013 or early 2014 this report will be updated with year 2 data to further define baseline conditions;
- 3. Mercury concentrations in large fish collected in 2012; and,
- 4. An interpretive description of the current water and fish quality in the Petawawa River at the proposed facility, including identification of potential sensitivities and mitigation measures.

2 Facility Description

Xeneca is proposing to construct a hydroelectric generating facility at the present day Big Eddy Rapids on the Petawawa River approximately 125 metres (m) upstream of the Canadian Pacific Railway bridge (Figure 1).

The facility will consist of an open approach canal, a concrete weir, a powerhouse and an earthen dam. It will operate a 'run of the river' flow regime with no provisions for peaking as there is no realistic capacity for storing water at the site The proposed project would flood riparian lands up to 1.9 kilometres (km) upstream and inundate approximately 12.1 hectares (ha) of land based on hydrological investigations. The layout of the proposed hydroelectric facility and extent of inundation are shown on Figure 2.

Figure 1. The location of the proposed Big Eddy hydroelectric facility on the Petawawa River.

Figure 2. The layout of the proposed Big Eddy hydroelectric facility and the extent of inundation.

3 Background

3.1 Possible Changes to Water Quality Following Impoundment

Damming a river creates an impoundment upstream which may result in physical changes to the aquatic environment including vertical thermal stratification in the impounded water, increased exposure of water to soils, a change in nutrient or metal cycling and concentrations, and/or changes to the fish and invertebrate communities.

Newly impounded water is exposed to areas of rock, soil and vegetation that have not been historically saturated with water. Impoundment creates both physical and chemical changes to the water as flooded land changes from a terrestrial environment to an aquatic or riparian environment with nutrients, metals, organic carbon, dissolved and suspended solids being released to the new, overlying aquatic environment. The rate and nature of change from terrestrial soils to stable saturated sediment will affect the rate of release of the materials and will depend on several factors including: the type of terrestrial vegetation, the depth and type of soil saturated by the impounded water, and the depth and duration of the impoundment.

Typically, following flooding, water chemistry in an impoundment will change quickly and then stabilize. Nutrients, metals, major ions, dissolved and total organic carbon, dissolved and suspended solids, conductivity, alkalinity, dissolved oxygen, and temperature may all change as a result of:

- Chemical and physical inputs to surface water from the inundated land;
- A shift in the aquatic processes of the water in the impoundment; and,
- The physical structure of the water in the impoundment (e.g., water depth, thermal stratification, surface area of the impoundment and water residence time in the impoundment).

Changes in water quality may also occur as the impounded water is discharged to the natural river channel downstream. Increased velocity may suspend sediments and the discharge may alter temperature and dissolved oxygen.

3.2 Mercury Bioaccumulation

The potential increase of available mercury in surface water is a particular concern with water impoundment. Mercury is present naturally in soils and rocks in Ontario and is enhanced by atmospheric deposition from human sources such as the combustion of coal. Inundating land with water results in the partial release of inorganic mercury accumulated in the vegetation and soils (Bodaly et al. 1984, Hecky et al. 1991). Decomposition of flooded organic matter in soils and vegetation usually enhances the methylation of mercury to the bioavailable and toxic form of methyl mercury (Kelly 1997, Montgomery 2000) because it can stimulate the methylating microbial community, but it can also decrease methylation rates due to increased complexation of mercury to organic ligands, reducing its bioavailability. Mercury and methyl mercury may biomagnify within the food chain and can pose a health concern to humans and wildlife through fish consumption (Bodaly et al. 1984, Jackson 1988, Hall et al. 2005).

Mercury concentrations in fish may increase rapidly after impoundment and then decrease and stabilize in subsequent years. This cycle has been observed as a result of experimental inundation in Ontario (St. Louis et al. 2004) and in hydroelectric projects in Quebec where mercury is also present in the soils and vegetation of impounded areas from natural and anthropogenic sources (<u>http://www.hydroquebec.com/</u> <u>sustainable-development/documentation/mercure.html</u>).

Water quality and mercury in fish tissue should be monitored before and after facility development to assess if change is occurring as a result of the development, and if this change poses a human health or environmental risk. For example, mercury concentrations are elevated in fish tissue throughout much of Ontario as a result of atmospheric deposition and natural soil weathering, and a pre-development baseline of mercury concentrations in fish should be established so that post-development concentrations are not mistakenly attributed to the development or operation of the facility. If unacceptable change is occurring as a result of the development and/or operation of the hydroelectric facility, monitoring provides valuable information on the trend(s) of the change relative to pre-development conditions. The monitoring results from existing projects can also be used to design and operate future projects in ways which minimize environmental impacts.

The rate of mercury accumulation in fish is dependent on a variety of factors. Fish size, diet and trophic position are important but site-specific factors such as the type of terrain flooded, hydraulic residence time and water level fluctuation are important considerations as well (Reed Harris Environmental Ltd. 2012). Schetagne et al. (2003) found that fish accumulate mercury at higher rates immediately downstream of hydroelectric facilities because some fish pass through turbines and are injured, making them more easily available as food for fish downstream, encouraging piscivory and increasing mercury bioaccumulation. Fish size, diet and trophic position variables were partly controlled during baseline sampling through the preferential sampling of piscivorous fish from a specific size class (described in Section 4.3). Forage fish were also collected so that impacts could be assessed at multiple trophic levels and since these fish have a lower trophic position, increasing mercury concentrations should be observed earlier.

Mercury chemistry in the environment is complex and spatial variation in mercury concentrations is difficult to quantify, typically varying within each system (Desrosiers et al. 2006). Research is sparse on small-scale projects like Big Eddy, which has a small area of inundation and rapid flow-through rate, which makes desk top predictions of mercury generation and bioaccumulation difficult. However, site-specific factors including type of terrain, hydraulic residence time and water level fluctuation can be used to identify site-specific sensitivities. As the operating regime for the facility is established, these factors can refine post-development monitoring to target the periods of highest sensitivity.

Mercury concentrations in water and mercury in fish tissue will therefore be monitored before and after facility development to assess if change is occurring as a result of the development, or if concentrations reflect baseline conditions.

3.3 Regulatory Context

The baseline water quality and fish sampling program for Big Eddy was conducted according to recommendations in the draft MOE document titled "From Class EA to Permit to Take Water: A Guide to Understanding the Ministry of the Environment's Technical Requirements for Waterpower" (January, 2012) and discussions with the MOE on application of the recommendations.

The MOE guide was prepared, with input from HESL, to provide guidance to waterpower operators and developers on the Ministry's expectations for a comprehensive assessment of the impacts of a new waterpower facility on the quality of water in a river, and the accumulation of Mercury in fish. Application of the guide to Xeneca's proposed facilities is described in the HESL document titled "Xeneca Power Development Surface Water Quality and Fish Sampling Program, Hydroelectric Generating Facility Monitoring for Baseline Conditions and Early Operation" (HESL, June 2012), and applied in this report to Big Eddy.

4 Water Quality and Fish Sampling Programs

4.1 Objectives

The baseline water quality and fish sampling programs were conducted to:

- 1) Measure the surface water quality indicator parameters recommended by MOE (2012) before the facility is developed to provide a temporal reference for water quality in the project area; and,
- 2) Establish a pre-development baseline of mercury and methyl mercury in fish tissue using the sample sizes and methodologies recommended by MOE (2012).

The post-development sampling program will provide representative samples from upstream of the facility (reference), within the impoundment, and downstream of the facility, to monitor any effects of the facility on water and fish quality, taking into account natural variation. Post-development sampling will also be conducted according to the recommendations in MOE's draft guidance (2012), and will be compared to baseline results to assess any changes in water and fish quality following development.

4.2 Water Sampling

The 2012 water quality program collected representative samples of river water, consistent with the MOE's draft guidance (2012), to provide a pre-development reference of water quality and address changes to water quality in the river in response to the seasonal changes in the hydrograph. Samples were collected seasonally and in duplicate pairs to address variance in water quality.

Baseline sampling will be conducted over two years to reduce the variability associated with one year of water quality data and provide a more representative baseline. Year 1 was completed in 2012 and year 2 will be completed in 2013 using the same design.

Post-development water quality samples will be collected in years 1, 2 and 3 following development, as recommended by MOE (2012). The results of the post-development sampling will be compared to baseline results and reported annually. If water quality has not stabilized by year 3, further monitoring will be conducted in consultation with MOE. Construction-phase water quality monitoring will be determined once the detailed design and construction sequencing for the projects is completed.

4.2.1 Seasonal Sampling

Sampling was conducted once during each of the three annual open water flow periods in 2012: immediately after the first flush of the spring freshet (April), during the summer low-flow period (August) and during the increasing fall flow (November).

In most Ontario rivers there are notable differences in water quality associated with the three open water flow periods, as observed in the results of the MOE's Provincial Water Quality Monitoring Network (PWQMN). Data from a PWQMN monitoring station on the Petawawa River in 1996, 1999 and 2000 (PWQMN station 18493002002) confirmed the seasonal pattern for the Petawawa River (Figure 3).

Figure 3. The location of the PWQMN station downstream of the proposed facility.

Sampling periods for Big Eddy were identified by examining the Petawawa River's mean daily hydrograph from 1915 to 2011, produced by the Water Survey of Canada online <u>http://www.wsc.ec.gc.ca/applications</u> /<u>H2O/graph-eng.cfm?station=02KB001&report=daily&year=2011</u> (Figure 4) so that representative samples could be collected during each flow regime. Hydrograph data from 2012 was not included in Figure 5 because it was not available in a graphic form at the time of reporting. The sampling dates are refined based on the river's actual flow: for example, 2012 spring sampling was conducted in mid-April, reflecting a spring freshet in 2012 that was slightly earlier than the 1915 to 2011 mean.

4.2.2 Sample Locations – Baseline

Baseline water quality samples were collected in 2012 and will be collected in 2013, immediately downstream of the proposed facility and upstream of developed areas in the town of Petawawa (Figure 5, following page).

The baseline sample locations are downstream of all appreciable tributaries and wetlands that could affect the water quality at the facility, and represent the ambient water quality in the project area. No construction activities will be conducted in 2013 and so the 2013 sampling will complete the baseline water quality sampling in the Big Eddy project area.

4.2.3 Sample Locations – Post-Development

Post-development samples will be collected from upstream, within the impoundment, and at two locations downstream of the proposed facility as shown on Figure 5 and described on Table 1.

Figure 5. The baseline and post-development water sampling locations.

Table 1.	Post-development water	[.] sampling	locations.
----------	------------------------	-----------------------	------------

Sample Site	Location	Rationale
Upstream Reference	Upstream of the impoundment and downstream of all confluences which could affect the aggregate water quality flowing into the project area	The sample provides a reference of water entering the project area - comparing the results of this sample to the baseline samples quantifies the effects of natural variability on water quality, differentiates between project-related and naturally occurring environmental changes, and isolates project-related changes.
Impoundment	Deepest part of the impoundment	The sample measures the water quality in the impoundment where the change is likely to be the most pronounced. In addition to the water quality parameters and methods at the other sample locations, a temperature and dissolved oxygen profile will be conducted at the impoundment sample location to identify if thermal stratification is occurring in the impoundment. If stratification is identified, a discrete water quality sample will be collected from each thermal layer.
Downstream - Weir	Immediately downstream of the proposed weir	The sample will be collected from the same location where baseline samples were collected to allow for temporal assessments. It is a conservative representation of water quality affected by the proposed facility as it is immediately downstream of the facility and impoundment water quality will not be appreciably attenuated with background water.
Downstream - Conveyance Channel	Immediately downstream of the discharge of the proposed conveyance channel	This location will assess the water quality immediately downstream of the conveyance channel and should be collected as close as possible to the outfall so that the effects of urban inputs to river upstream (if any) are not sampled. If the analytical results of this sample are different than the other post-development downstream water sample, the impoundment water sample results should be examined to determine if the difference in water quality is from water discharging from the conveyance channel or urban inputs influencing the water quality at the conveyance channel outfall.

4.2.4 Duplicate Samples

During baseline sampling, duplicates were collected at each location approximately 10 minutes after the initial sample, to assess spatial and temporal variance of the flowing river. The duplicate sample was collected from the same location as the initial, but represented different water because the river constantly flowed past the sample location.

4.2.5 Sample Collection – Methods

Water samples were collected in the field by staff of ORMG who worked according to the following directions provided by HESL:

- From greater than 2 m off-shore and 0.5 m below the water's surface using a clean sampling vessel secured to a clean, contaminant-free sampling pole;
- From the flowing portion of the main channel of the river, avoiding eddies, back pools or floating debris, since water from these areas may not represent the bulk water quality in the river;
- Water samples were collected into clean, laboratory supplied bottles containing the appropriate chemical preservative, and were stored on ice or frozen as required. Samples were field filtered, using laboratory-supplied filters as required;
- All samples, containers and instruments for field measurements were handled only by personnel wearing clean, contaminant-free, un-powdered nitrile gloves;
- Each sample location was logged with a GPS;
- The date, time and field conditions at the time of sampling (e.g., weather, snow and ice presence) were recorded and the sample location photographed; and,
- Samples were shipped to the analytical laboratories after each day of sampling with chain of custody documents, to record the sample shipping and handling.

All water samples were collected by ORMG with results presented to HESL for inclusion in this report and interpretation.

4.2.6 Analysis

All water quality samples were analyzed for the following parameters as recommended by MOE (2012):

- pH, conductivity, alkalinity;
- total suspended solids (TSS) and total dissolved solids (TDS);
- cations (Mg, Na, Ca, K);
- \oplus anions (Cl, SO₄);

- dissolved organic carbon (DOC);
- total phosphorus (TP);
- nitrate, nitrite, ammonia and total Kjeldahl nitrogen (TKN);
- total metals;
- low level total mercury (0.1 ng/L detection limit); and,
- low level methyl mercury (0.02 ng/L detection limit).

Analyses were conducted by ALS Environmental, a Canadian Association for Laboratory Accreditation (CALA) accredited laboratory with the following exceptions:

- Mercury and methyl mercury in water and fish were analyzed by Flett Research Ltd., Winnipeg, Manitoba (CALA accredited); and,
- Low-level phosphorus analysis was conducted by the Trent University Laboratory at Dorset, Ontario, which is not CALA accredited, but has the highest resolution phosphorus analysis in the province.

Water temperature, dissolved oxygen, pH and conductivity were also measured in the field.

4.3 Fish Sampling

The sampling program for mercury and methyl mercury in fish was developed considering:

- The modes of mercury transport from impoundments (i.e., passively by migration with water and suspended solid flowing downstream, and actively in fish body burdens which can move up and downstream);
- Naturally occurring mercury in the environment, and differentiation from facility-generated mercury by providing temporal references as there is no barrier to fish migration that would isolate an upstream fish population from the project area post-development to provide a reference;
- The availability of fish for sampling, including where fish are seasonally and the sustainability of sampling a population of fish four times over ten years; and,
- The dynamics of mercury uptake and accumulation in fish of different species and ages.

These factors were incorporated into the fish sampling program described below. All fish sampling was conducted as permitted by the MNR, according to their "Riverine Index Netting, Manual of Instructions" (March, 2010) and in keeping with the recommendations of MOE (2012).

MOE (2012) identified young-of-the-year Yellow Perch (*Perca flavescens*) as the preferred forage fish mercury sentinel species. On a conference call with MOE in June, 2012, MOE confirmed that yearling Yellow Perch were acceptable because young-of-the-year may not have had sufficient time to forage and accumulate mercury, and are difficult to find and catch. If these fish were not available, then a cyprinid

species which was common within the river section was used as a proxy, an approach that is acceptable to MOE.

4.3.1 Sampling Intervals

A baseline of mercury concentrations in fish tissue has been established for large fish (Section 5.2) from which to compare post-development mercury concentrations, and a baseline of mercury in forage fish will be established in 2013.

Mercury accumulation in the food chain has a slower response to inundation than water quality. Postdevelopment sampling will therefore be conducted during each of years 3, 6 and 9 following development, in line with the MOE (2012) guidance. If mercury concentrations in fish tissue have not stabilized within nine years then additional sampling may be required and a revised program will be developed in consultation with MOE. Post-development sampling results will be provided to MOE so that they can incorporate them into the "Guide to Eating Ontario Sport Fish" (MOE 2013) which the Ministry publishes every year, and increase the Ministry's database on the concentrations of mercury in fish prior to and following development of hydropower facilities.

4.3.2 Targeted Fish

The targeted fish species included larger predator fish and forage fish but considered the type and availability of fish encountered during baseline sampling, as follows:

- Large Fish: 20 individuals of at least 25 to 55 cm in length; fish species common to the area that can be caught in subsequent years. Piscivorous fish were preferred, but fish population studies in 2011 showed that piscivorous fish may be difficult to collect in sufficient numbers in the study area. However, Channel Catfish (*Ictalurus punctatus*) were easily collected, recommended as an alternative species for mercury monitoring, and approved as an alternative species by MOE on the basis of a literature search completed by HESL (HESL 2012b (Appendix A)), with the following conditions:
 - Channel Catfish > 400 mm in length should be used because larger fish include more fish in their diet and thus bioaccumulate mercury at faster rates, and;
 - Target and submit, where possible, Walleye (Sander vitreus) and Bass (Micropterus spp.).
- Forage Fish: five (5) composite samples of 5 to 10 individuals of yearling Yellow Perch or other cyprinid species were targeted to provide a composite sample of 10 grams for each sample. Forage fish sampling and analysis will be completed in 2013.

4.3.3 Annual Timing of Sample Events

The relative sizes of forage fish increase quickly over the course of one year and so the forage fish sampling program was planned during the August water quality survey to avoid confounding results with the age of the fish collected over multiple visits, and to coincide with high abundance and catchability of forage fish before waters cooled. Larger fish can be sampled over multiple visits in a single season, or even over two years, provided that a comparable size and distribution of fish are submitted for each

sampling event; sizes are carefully documented and a relationship is established between size and mercury content.

4.3.4 Sample Locations – Baseline

Large fish were collected in the reach downstream of the confluence of the Petawawa and Barron Rivers, to upstream of the proposed facility (Figure 6), as part of the baseline ecological studies for the project. Forage fish sampling in 2013 will be conducted in close proximity to the proposed facility because forage fish migration is limited and sampling fish further afield may not provide an accurate representation of mercury concentrations in the project area.

Figure 6. The baseline and post-development fish sampling locations. The reach of river to be sampled is highlighted

4.3.5 Sample Locations – Post-Development

The proposed Big Eddy hydroelectric facility will provide fish passage after construction because it will operate a 'run of the river' flow regime and is required to allow for upstream migration of Lake Sturgeon (*Acipenser fulvescens*). Post-development fish sampling will therefore be focused on temporal as opposed to spatial comparisons to determine project impacts because fish can't be collected from an adjacent control site after construction. It will be more challenging to factor natural temporal variation into mercury analysis following development because there will not be a real time upstream reference. Sampling will be focused in the same area as 2012, which is the reach between the confluence of the Petawawa and Barron Rivers, to upstream of the proposed facility so that urban impacts from the town of Petawawa do not confound the assessment (Figure 6).

4.3.6 Sampling Methods

Large fish were collected by ORMG with fish sampling results provided to HESL for inclusion in this report. Samples were stored in coolers on ice upon packaging and frozen at the end of each sample day and were shipped frozen to Flett Research in Winnipeg, Manitoba for total mercury analysis.

4.3.7 Analysis

Large fish were analyzed for total mercury (detection limit < 2.0 ng/g) by Flett Research of Winnipeg, MN and it was conservatively assumed that all mercury was methyl mercury. Mercury analysis was conducted only on fillets as recommended by MOE (2012) to assess the portion of the fish which would be eaten by humans and preferentially eaten by other piscivores.

5 2012 Baseline Results

5.1 Water Quality

5.1.1 Sampling Dates

Table 2 provides the dates that water quality samples were collected at Big Eddy Rapids in 2012. All samples were collected during the intended open water periods and represent the water quality in the river during the indicated flow regime.

Table 2. 2012 water quality sampling dates.

Facility	Hydrograph Period	Sample Date
	- Spring freshet, following first flush	16-Apr-12
Big Eddy	- Summer low-flow	23-Aug-12
	- Fall flow (increasing)	20-Nov-12

5.1.2 Locations

The 2012 baseline water quality samples were collected from the location shown on Figure 5 (page 15).

5.1.3 Analytical Results

All parameter concentrations analyzed at a laboratory except pH, were within the Ontario Provincial Water Quality Objectives (PWQOs (MOE, 1998)) the regulatory guidelines applicable to surface water in the project area, and reflected good water quality. A single duplicate laboratory sample of pH from August (6.49) was slightly below the PWQO of 6.5. Lower pH in the Petawawa River reflects the low buffering capacity and acidic soils of the Precambrian Shield, and humic acids in the many wetlands of the Petawawa River watershed. The median conductivity of 36 μ S/cm confirms the low TDS, alkalinity levels and acid sensitivity of the Petawawa River. The annual median concentrations of all detected parameters for the project area are presented in Table 3.

Table 3. The 2012 median laboratory-derived concentrations of all measurable water quality parameters in the project area.

Parameter	Units	2012 Median for the Project Area
Aluminum (Al)	μg/L	45
Barium (Ba)	μg/L	17.5
Calcium (Ca)	µg/L	3,925
Iron (Fe)	µg/L	168
Magnesium (Mg)	µg/L	1,165
Manganese (Mn)	µg/L	10.2
Total Mercury (Mercury)	µg/L	0.00215
Methyl Mercury ([CH₃Mercury) ⁺]	µg/L	0.000065
Silicon (Si)	µg/L	2550
Strontium (Sr)	µg/L	25.5
Zinc (Zn)	µg/L	1.5
Conductivity	μS/cm	36
рН	рН	7.11
Total Dissolved Solids	mg/L	39
Alkalinity, Total (as $CaCO_3$)	mg/L	11.5
Total Kjeldahl Nitrogen	mg/L	0.335
Total Phosphorus (ALS)	mg/L	0.00455
Sulphate	mg/L	4.75
Dissolved Organic Carbon	mg/L	7

Some parameter concentrations were greater or less than the laboratory's reported detection limit (RDL) on different dates so for the purpose of statistical analyses, the concentrations of these parameters were assumed to be ½ the RDL. The seasonal trends of selected measured parameter concentrations are presented on the plots in Figure 7. The analytical results of all analyzed parameters are presented in Tables 4 to 6.

The headwaters of the Petawawa River are located in Algonquin Provincial Park where there are no known major contaminant sources. The results indicate seasonality in the river's water quality. Aluminum, iron and total mercury were all elevated during the spring freshet, decreased during the summer low flow, and increased again in the fall, coincident with DOC levels in the river as shown in Figure 7; these patterns reflect wetland drainage flushing into the river during higher flow periods. Conductivity, magnesium, manganese, strontium, TP and TKN concentrations were inversely related to the river's flow in 2012 (i.e., the highest concentrations occurred during the summer low flow). Calcium, zinc and TDS decreased throughout the year.

Figure 7. Seasonality of selected 2012 baseline monitoring parameters. Plotted values are medians for all sites.

 Table 4. 2012 baseline water quality results: field parameters.

			Big Eddy							
Parameter	Units	PWQO	Baseline	Replicate (of Baseline)	Baseline	Replicate (of Baseline)	Baseline	Replicate (of Baseline)		
			16-Apr-12	16-Apr-12	23-Aug-12	23-Aug-12	20-Nov-12	20-Nov-12		
			Labora	tory Results						
Conductivity	μS/cm	N/V	29.7	29.8	47.0	44.0	35.9	35.8		
рН	рН	6.5 - 8.5	7.33	7.05	7.35	6.49	7.15	7.06		
Total Suspended Solids	mg/L	N/V	<3.0	<3.0	<3.0	<3.0	<2.0	<2.0		
Total Dissolved Solids	mg/L	N/V	46	44	40	38	34	34		
	Field Measurements									
Dissolved Oxygen	mg/L	> 7 ¹	8.63		*		18 ²			
Water Temperature	°C	N/V	10		*		3.45			
Conductivity	μS/cm	N/V	38		*		22 ²			
рН	pН	6.5 - 8.5	6.26		*		5.01 ²			

Notes:

- PWQO Ontario Ministry of the Environment. Ontario Provincial Water Quality Objectives. July, 1994.
 - N/V No value applicable to ambient surface water not influenced by a point source discharge.
 - -- Parameter not measured.
 - * Data from field biologists never received by HESL.
 - 1. PWQO for dissolved oxygen at 0°C.
 - 2. Inconsistent data not utilized in analyses.

			Big Eddy						
Parameter	Units	PWQO	Baseline	Replicate (of Baseline)	Baseline	Replicate (of Baseline)	Baseline	Replicate (of Baseline)	
			16-Apr-12	16-Apr-12	23-Aug-12	23-Aug-12	20-Nov-12	20-Nov-12	
Alkalinity, Total (as CaCO ₃)	mg/L	No decrease > 25% of background.	11	<10	13	11	12	12	
Ammonia, Total (as N)	mg/L	20	<0.050	<0.050	<0.050	<0.050	<0.050	< 0.050	
Chloride	mg/L	N/V	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	
Nitrate-N	mg/L	N/V	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Nitrite-N	mg/L	N/V	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Total Kjeldahl Nitrogen	mg/L	N/V	0.29	0.32	0.53	0.50	0.35	0.27	
Total Phosphorus (ALS)	mg/L	0.03	0.0066	0.0034	0.0057	0.0065	<0.0030	<0.0030	
Total Phosphorus (Dorset)	mg/L	0.03	0.0052	0.0054			0.0212 ¹	0.0201 ¹	
Sulphate	mg/L	N/V	4.7	4.8	4.7	4.7	5.4	5	
Dissolved Organic Carbon	mg/L	N/V	9.1	9.2	5.6	5.7	7	7	

 Table 5.
 2012 baseline water quality results: anions and nutrients.

Notes:

PWQO - Ontario Ministry of the Environment. Ontario Provincial Water Quality Objectives. July, 1994.

-- - Parameter not analyzed.

1. - Sample appears to be contaminated from filtering error.

 Table 6.
 2012 baseline water quality results: metals.

						Big E	ddy		
Parameter	Units	PWQO	Baseline	Replicate (of Baseline)	Baseline	Replicate (of Baseline)	Baseline	Replicate (of Baseline)	
			16-Apr-12	16-Apr-12	23-Aug-12	23-Aug-12	20-Nov-12	20-Nov-12	
Aluminum (Al)	μg/L	75 ^{1.}	58	49	20	23	50	41	
Antimony (Sb)	µg/L	20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	
Arsenic (As)	µg/L	100	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Barium (Ba)	µg/L	N/V	17	17	21	22	18	17	
Beryllium (Be)	µg/L	11 ^{2.}	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Bismuth (Bi)	µg/L	N/V	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Boron (B)	µg/L	200	<50	<50	<50	<50	<50	<50	
Cadmium (Cd)-									
Total	µg/L	0.2	<0.090	<0.090	<0.090	<0.090	<0.090	<0.090	
Calcium (Ca)	µg/L	N/V	6,080	3,140	4,310	4,310	3,540	3,370	
Chromium (Cr)	µg/L	8.9 ^{3.}	<0.50	<0.50	<0.50	0.58	<0.50	<0.50	
Cobalt (Co)	µg/L	0.9	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
Copper (Cu)	µg/L	5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Iron (Fe)	µg/L	300	167	171	149	147	177	168	
Lead (Pb)	µg/L	20 ^{4.}	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Magnesium (Mg)	µg/L	N/V	1,160	1,130	1,480	1,500	1,170	1,120	
Manganese (Mn)	µg/L	N/V	11.1	9.3	25.3	23.6	0.0103	0.0096	
Mercury	µg/L	0.2	0.00295	0.00296	0.00107	0.00113	0.00207	0.00223	
MeMercury	µg/L	N/V	0.00005	0.00008	0.00004	0.00002	0.00008	0.00008	
Molybdenum (Mo)	µg/L	40	<1.0	<1.0	<1.0	<1.0	<0.0010	<0.0010	
Nickel (Ni)	µg/L	25	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	
Potassium (K)	µg/L	N/V	<1000	<1000	<1000	<1000	<1000	<1000	
Selenium (Se)- Total	µg/L	100	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	
Silicon (Si)	µg/L	N/V	2700	2,600	2,000	2,000	2,600	2,500	
Silver (Ag)	µg/L	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Strontium (Sr)	µg/L	N/V	25.6	23.5	35.5	35.6	25.3	24.5	
Thallium (TI)	µg/L	0.3	<0.30	< 0.30	<0.30	<0.30	<0.30	<0.30	
Tin (Sn)	µg/L	N/V	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Titanium (Ti)	µg/L	N/V	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	
Tungsten (W)	µg/L	30	<10	<10	<10	<10	<10	<10	
Uranium (U)	µg/L	5	<5	<5	<5	<5	<5	<5	
Vanadium (V)	µg/L	6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Zinc (Zn)	µg/L	30	19.1	<3.0	<3.0	3.9	<3.0	<3.0	
Zirconium (Zr)	µg/L	4	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	

Notes:

PWQO - Ontario Ministry of the Environment. Ontario Provincial Water Quality Objectives. July, 1994.

N/V - No value applicable to ambient surface water not influenced by a point source discharge.

1. Interim PWQO for pH >6.5 to 9 for total aluminum in clay-free samples.

2. Interim PWQO for hardness as $CaCO_3 < 75 \text{ mg/L}$.

3. PWQO for trivalent chromium.

4. PWQO for alkalinity as $CaCO_3 40 - 80 \text{ mg/L}$.

The following qualifiers have been applied to the 2012 water sampling data:

- There were no total phosphorus results from the Trent University Laboratory for the August 23, 2012 sampling event because the samples broke in transit to the laboratory. The November results appear to be contaminated, possibly because of the inclusion of zooplankton or other debris as the phosphorous concentrations are significantly higher than those reported by ALS throughout the year and by Trent University in April;
- Field measurements of turbidity, dissolved oxygen, water temperature, conductivity and pH taken on August 23, 2012 were shipped by ORMG biologists but never received by HESL. These field parameters, including turbidity, will be measured during all sampling events in 2013; and,
- Field measurements on November 20, 2012 are not consistent with laboratory and historical PWQMN results (Table 3 and supplementary Table 7, respectively). Therefore, laboratory results were deemed to be more representative of conditions in the Petawawa River and were used in the analyses.

Table 7. A comparison of ORMG field measurements collected on November 20, 2012 and the historical range of parameter values at the downstream PWQMN station.

_	Results					
Parameter	OPMC	PWQMN				
	URIVIG	Min	Max	Mean		
рН	5.01	6.4	9.5	7.4		
Dissolved Oxygen (mg/L)	18	3.9	15	9.7		

A complete interpretive description of the river's water quality is provided in Section 6.0 – Conclusions and Discussion. Analytical certificates of analysis and field data sheets are provided in Appendices B and C, respectively.

5.1.4 Quality Assurance

The quality of the field collection and laboratory methods and the precision of the data were assessed by inspecting the results of field duplicate samples. Relative percent differences between parameter concentrations in duplicate samples were considered significant if they departed more than 20% from the mean and were greater than 5 times the detection limit (U.S. EPA 2012). The only samples which exceeded these parameters were the calcium samples collected in April which differed by 48%, and the duplicate zinc results from April, which were 19 and < 3 μ g/L. The analytical results indicate good quality control and sample representativeness for all but Zn and Ca. Additional sampling in 2013 will provide more data to assess the significance of these differences.

5.2 Fish

5.2.1 Sampling Dates

Large fish sampling was conducted by ORMG on August 21, 2012.

5.2.2 Locations

The baseline large fish samples were collected from the highlighted reaches of the Petawawa River (shown on Figure 6, page 20).

5.2.3 Description of Catch

ORMG submitted 37 Channel Catfish and 3 Walleye for total mercury analysis. The summary statistics for size and weight are presented in Table 8.

Channel Catfish > 400 mm in length were targeted during baseline sampling and the same size range should be targeted during post-development sampling to maintain consistency with the baseline sampling population. Summary statistics of the population are presented as means because the population distribution was normal.

Table 8. Baseline large fish physical summary statistics.

Sample Location	Number of	Mean	Mean
	Individuals	Total Length	Weight
	Analyzed	(mm)	(wet g)
Big Eddy Rapids	40	467	837

5.2.4 Analytical Results

The maximum concentration of total mercury in large fish was 1720 ng/g, the minimum was 222 ng/g and the median was 436 ng/g within the project area in 2012 (Table 8). All mercury concentrations are presented as nanograms of mercury per wet weight (grams) of fish tissue sample. Mercury concentrations were positively correlated with weight (y = 0.57x + 514, $R^2 = 0.34$) and length (y = 0.08x + 420, $R^2 = 0.27$), albeit weakly, indicating heavier and longer fish have higher concentrations of mercury. Relational plots of fish weight and length to mercury concentration are presented in Figure 8. The analytical results for each individual fish are presented in Table 10 (page 30). Laboratory certificates of analysis are included in Appendix B.

Table 9.	Summary	of baseline	large fish	analytical	results.

Sample Location	No. of Samples	Total Mercury Concentrations (ng/g wet weight)		
	····	Max	Min	Median
Big Eddy Rapids	40	1720	222	436

Figure 8. Relational plots of large fish weight and length vs. total mercury concentrations.

 Table 10.
 Large fish analytical results for baseline sampling.

Big Eddy						
Sample ID	Date	Total Mercury (ng/g wet wt.)	Species	Total Length (mm)	Total Weight (wet g)	
TMDSOL100312ZB1-001	21-Aug-12	874	Channel Catfish	443	670	
TMDSOL100312ZB1-002	21-Aug-12	572	Walleye	418	570	
TMDSOL100312ZB1-004	21-Aug-12	733	Walleye	570	1470	
TMDSOL100312ZB1-005	21-Aug-12	330	Channel Catfish	500	1060	
TMDSOL100312ZB1-006	21-Aug-12	386	Channel Catfish	475	770	
TMDSOL100312ZB1-007	21-Aug-12	222	Channel Catfish	414	540	
TMDSOL100312ZB1-008	21-Aug-12	721	Channel Catfish	500	1040	
TMDSOL100312ZB1-009	21-Aug-12	360	Channel Catfish	440	610	
TMDSOL100312ZB1-010	21-Aug-12	339	Channel Catfish	472	790	
TMDSOL100312ZB1-011	21-Aug-12	1050	Channel Catfish	484	970	
TMDSOL100312ZB1-015	21-Aug-12	1110	Channel Catfish	513	1050	
TMDSOL100312ZB1-017	21-Aug-12	351	Channel Catfish	415	510	
TMDSOL100312ZB1-018	21-Aug-12	285	Channel Catfish	444	770	
TMDSOL100312ZB1-019	21-Aug-12	389	Channel Catfish	466	750	
TMDSOL100312ZB1-020	21-Aug-12	417	Channel Catfish	468	880	
TMDSOL100312ZB1-021	21-Aug-12	412	Channel Catfish	455	640	
TMDSOL100312ZB1-025	21-Aug-12	274	Channel Catfish	430	670	
TMDSOL100312ZB1-026	21-Aug-12	322	Channel Catfish	433	610	
TMDSOL100312ZB1-027	21-Aug-12	677	Channel Catfish	445	700	
TMDSOL100312ZB1-028	21-Aug-12	624	Channel Catfish	480	850	
TMDSOL100312ZB1-029	21-Aug-12	279	Channel Catfish	415	530	
TMDSOL100312ZB1-030	21-Aug-12	621	Channel Catfish	485	940	
TMDSOL100312ZB1-031	21-Aug-12	754	Channel Catfish	500	1080	
TMDSOL100312ZB1-033	21-Aug-12	570	Walleye	310	220	
TMDSOL100312ZB1-034	21-Aug-12	374	Channel Catfish	473	920	
TMDSOL100312ZB1-035	21-Aug-12	392	Channel Catfish	470	840	
TMDSOL100312ZB1-036	21-Aug-12	280	Channel Catfish	416	540	
TMDSOL100312ZB1-037	21-Aug-12	887	Channel Catfish	513	1000	
TMDSOL100312ZB1-038	21-Aug-12	390	Channel Catfish	455	750	
TMDSOL100312ZB1-039	21-Aug-12	428	Channel Catfish	490	1000	
TMDSOL100312ZB1-040	21-Aug-12	1190	Channel Catfish	465	730	
TMDSOL100312ZB1-042	21-Aug-12	488	Channel Catfish	484	950	
TMDSOL100312ZB1-043	21-Aug-12	441	Channel Catfish	536	1250	
TMDSOL100312ZB1-044	21-Aug-12	430	Channel Catfish	462	800	
TMDSOL100312ZB1-045	21-Aug-12	506	Channel Catfish	485	840	
TMDSOL100312ZB1-046	21-Aug-12	565	Channel Catfish	480	910	
TMDSOL100312ZB1-048	21-Aug-12	663	Channel Catfish	467	760	
TMDSOL100312ZB1-049	21-Aug-12	412	Channel Catfish	422	570	
TMDSOL100312ZB1-050	21-Aug-12	1180	Channel Catfish	461	830	
TMDSOL100312ZB1-051	21-Aug-12	1720	Channel Catfish	620	2090	
Number of samples:		40				
Max. Total Mercury concent wt.):	ration (ng/g wet	1720		Mean Total	Mean Weight:	
Min. Total Mercury concentr wt.):	ation (ng/g wet	222		Length:		
Wean I otal Mercury concent wt.):	tration (ng/g wet	575		467	837	
weatan i otal wercury conce wt.):	entration (ng/g wet	436				

5.2.5 Mercury Consumption Guidelines

Mercury concentrations in large fish were compared to the consumption guidelines presented in the following documents:

- Guide to Eating Ontario Sport Fish (MOE 2013);
- Human Health Risk Assessment of Mercury in Fish and Health Benefits of Fish Consumption (Health Canada 2007), and;
- Protocol for the Derivation of Canadian Tissue Residue Guidelines for the Protection of Wildlife that Consume Aquatic Biota: Methyl mercury (CCME 1999).

The baseline large fish mercury analytical results are presented in Table 10 and the results relative to consumption guidelines are shown in Table 11. The Guide to Eating Ontario Sport Fish includes four consumption guidelines based on the consumer (women of child bearing age and children under 15 or the general population) and level of restriction (partial restrictions or complete restriction).

Table 11.	Number and percentage of large fish with Mercury concentrations that exceeded mercury
	consumption guidelines.

	Mercury Guidelines					
	MOE ¹	MOE ²	MOE ³	MOE ⁴	Health Canada ⁵	CCME ⁶
Guideline Value	0.26 μg/g	0.52 μg/g	0.61 μg/g	1.84 μg/g	0.5 μg/g	0.033 μg/g
Big Eddy	39 (98%)	17 (43%)	14 (35%)	0 (0%)	18 (45%)	40 (100%)

Notes:

- 1. Guide to Eating Sport Fish Women of child-bearing age and children under 15; Partial Restrictions (MOE 2013)
- 2. Guide to Eating Sport Fish Women of child-bearing age and children under 15; Complete Restriction (MOE 2013)
- 3. Guide to Eating Sport Fish General Population; Partial Restrictions (MOE 2013)
- 4. Guide to Eating Sport Fish General Population; Complete Restriction (MOE 2013)

5. Human Health Risk Assessment of Mercury in Fish and Health Benefits of Fish Consumption (Health Canada 2007)

6. Derivation of Canadian Tissue Residue Guidelines for the Protection of Wildlife that Consume Aquatic Biota: Methyl Mercury (CCME 1999)

The number of fish with mercury concentrations that exceeded Guide to Eating Sport Fish guidelines ranged from 0 (0%) for the general population – complete restrictions, to 38 (98%) for women of child bearing age and children under 15 – partial restrictions. Approximately half (48%) of the specimens exceeded the guideline set by Health Canada and all exceeded the CCME guideline, which is the most stringent of those used in this comparison and is intended for the protection of piscivorous wildlife.

6 Discussion and Conclusions

6.1 Water Quality

The 2012 baseline results indicate that the Petawawa River in the project area has very good water quality, typical of a Precambrian Shield river with few contaminant sources in its watershed. Metal concentrations in the river were all below PWQOs in 2012.

Nutrient concentrations in the river were low with nitrite and nitrate concentrations below the laboratory's reported detection limit (i.e., less than 0.10 mg/L), and all phosphorous concentrations were below the PWQO of 0.03 mg/L. The river water is not well buffered and is slightly acidic as indicated by conductivities ranging from 30 to 47 μ S/cm, a laboratory-measured pH of 6.49 to 7.35 and a total alkalinity of < 10 to 13 mg/L.

The river's water quality is linked to its seasonal flows:

- Aluminum, iron, total mercury and dissolved organic carbon were all elevated during the 2012 spring freshet, decreased during the summer low flow, and increased again in the fall mid-flow; and,
- Conductivity, magnesium, manganese, strontium, TP and TKN concentrations were inversely related to the river's flow in 2012 (i.e., the highest concentrations occurred during the summer low flow).

Developing the Big Eddy facility should not affect the alkalinity, pH or buffering capacity of the river. However, other water quality parameters may be affected, as follows:

- If appreciable sediment accumulates in the impoundment of the project area, turbidity and TSS could increase during peak flows as sediment flushes. The concentrations of metals and nutrients adsorbed to sediment would also increase, possibly resulting in reduced water quality;
- Mercury concentrations could increase independently of suspended sediment as a result of water impoundment alone but mercury transport out of the impoundment would be markedly higher with increased suspended sediment, as mercury – like other metals – adsorbs to sediment; and,
- Following development, the water temperature in the impoundments will warm from increased river surface area, which may result in lower dissolved oxygen concentrations as the water's capacity to retain oxygen decreases. The magnitude of dissolved oxygen decrease will depend on how much the water warms and other factors such as changes in water turbulent flow which recharges water with oxygen, changes in aquatic plant growth and oxygen demand from the conversion of inundated soil to sediment.

In addition to the seasonal monitoring recommended by MOE, post-development turbidity, suspended solids, metals and nutrient monitoring will be conducted during peak flows from the facility to establish a worst-case scenario for contaminants related to suspended sediment. Dissolved oxygen monitoring will be conducted in the early morning when it is typically lowest to account for overnight oxygen use by plant respiration.

6.2 Mercury in Fish

The Big Eddy hydroelectric facility will not impede fish movement so the study design to assess mercury concentrations in fish is based on a before vs. after approach where populations will be compared between years.

Many fish collected during baseline sampling contained mercury concentrations that exceeded various consumption guidelines. These results are not surprising as the mean mercury concentration of Walleye in 79 lakes throughout Ontario was 0.65 μ g/L (Wren et al. 1991), which exceeds all but one of the mercury consumption guidelines used for comparison. Following development, mercury concentrations are expected to increase in forage and predator fish based on the results of previous hydroelectric developments in northern Ontario, Quebec and Manitoba. Therefore it is important to note that:

- 3. Mercury concentrations often occur independent of impacts associated with hydroelectric development; and,
- 4. Mercury in fish should continue to be monitored following development as the mercury concentrations in some fish at Big Eddy Rapids approach or exceed fish consumption guidelines.

Forage fish sampling will be completed in 2013 and will provide additional insight into the dynamics of mercury accumulation in that tropic level, the proportion of methyl mercury in total mercury, and mercury concentrations in fish with higher exposure to the project area.

7 Closing

Thank you for the opportunity to conduct this work for Xeneca. If you have any questions or concerns regarding this report, please do not hesitate to contact Brent Parsons or Neil Hutchinson.

8 References

- Bodaly, We A., R. E. Hecky, and W. J. P. Fudge. 1984. Increases in fish Mercury levels in lakes flooded by the Churchill River diversion, northern Manitoba. Canadian Journal of Fisheries and Aquatic Sciences. 41: 682-691.
- Desrosiers M, Planas D, Mucci A. 2006. Total Mercury and methyl Mercury accumulation in periphyton of Boreal Shield lakes: influence of watershed physiographic characteristics. Sci Tot Environ. 355: 247-58.
- Hall BD, St. Louis VL, Rolfhus KR, Bodaly RA, Beaty KG, Paterson M. 2005. The impact of reservoir creation on the biogeochemical cycling of methyl and total Mercury in boreal upland forests. Ecosystems 2005; 8(3):248 – 66.
- Hecky RE, Ramsey DJ, Bodaly RA, Strange NE. 1991. Increased MeMercury contamination in fish in newly formed freshwater reservoirs. In: Suzuki T, Imura N, Clarkson TW, editors. Advances in Mercury toxicology. New York: Plenum Press, 33-52.
- Hutchinson Environmental Sciences Ltd. 2012. Xeneca Power Development Surface Water Quality and Fish Sampling Program, Hydroelectric Generating Facility Monitoring for Baseline Conditions and Early Operation. June, 2012.
- Hutchinson Environmental Sciences Ltd. 2012b. Technical Memorandum Mercury Accumulation in Channel Channel Catfish. April 9, 2012.
- Jackson, T. A. 1988. The Mercury problem in recently formed reservoirs of northern Manitoba (Canada): effects of impoundment and other factors on the production of methyl Mercury by microorganisms in sediments. Canadian Journal of Fisheries and Aquatic Sciences 45: 97-121.
- Kelly, C.A., J.W.M. Rudd, R.A. Bodaly, N.P. Roulet, V.L. St. Louis, A. Heyes, T.R. Moore, S. Schiff, R. Aravena, K.J. Scott, B. Dyck, R. Harris, B. Warner, G. Edwards 1997. Increases in fluxes of greenhouse gases and MeMercury following flooding of an experimental reservoir. Environmental Science and Technology 31: 1334-1344.
- Montgomery, S., M. Lucotte, I. Rheault 2000. Temporal and spatial influences of flooding on dissolved Mercury in boreal reservoirs. The Science of the Total Environment. 260: 147-157.
- Ontario Ministry of the Environment. From Class EA to Permit to Take Water: A Guide to Understanding the Ministry of the Environment's Technical Requirements for Waterpower. Draft Document, January, 2012.
- Reed Harris Environmental Ltd. 2012. Potential for Increased Fish Mercury Concentrations Associated with the Proposed Kabinakagami River Hydroelectric Project.

- St. Louis, V.L., J. Rudd, C. Kelly, R. Bodaly, M. Paterson, K. Beaty, R. Hesslein, A. Heyes and A. Majewski. 2004. The rise and fall of Mercury methylation in an experimental reservoir. Environ. Sci. Technol. 38: 1348-1358.
- U.S. EPA 2012. U/S/ EPA Test Methods for Evaluating Solid Waste (SW-846). Chapter One: Quality Control. Online at <u>http://www.epa.gov/epawaste/hazard/testmethods/sw846/online/index/htm</u>.
- Xeneca Power Development Inc. 2010. Project Description Big Eddy (Petawawa River) Hydroelectric Generating Station.
- Wren, C.D, W.A. Scheider, D.L. Wales, B.W. Muncaster and I.M. Gray. 1991. Relation between Mercury concentrations in walleye (*Stizostedion vitreum* vitreum) and northern pike (*Esox* Lucius) in Ontario lakes and influence of environmental factors. Can. J. Fish. Aquatic Sci. 48: 132-139.

Appendix A. Catfish Memo

3-1 Taylor Road, Bracebridge ON P1L 1S6 ph: 705 645 0021

Technical Memorandum

То:	Ed Laratta, Xeneca Power Development
From:	Bev Clark
Date:	April 09 2012
Project:	J100036
Re:	Mercury accumulation in Channel Catfish

Background

Xeneca's 2011 field programs at their proposed power sites on the Petawawa River showed that there was some concern that the preferred predator species of fish may be difficult to collect in sufficient numbers for Hg accumulation monitoring. Channel catfish (*Ictalurus punctatus*) were easily collected in the Petawawa River and were recommended as an alternative species for mercury monitoring. In a conference call on March 30, 2012, MOE staff suggested that further information was required before allowing that catfish would be suitable as a target species for Hg effects monitoring. To this end, Hutchinson Environmental Sciences Ltd. conducted a brief literature search to summarize what is currently know about Hg accumulation and feeding habits of Channel Catfish.

The two most pertinent questions are:

- 1. Do Channel Catfish accumulate mercury?
- 2. Do Channel Catfish, which are benthic omnivores, consume sufficient quantities of fish or crayfish to consider them as being representative of a predator species?

Literature Search

Mercury in Channel Catfish

It is important to consider reported mercury concentrations in Catfish relative to other species. Absolute concentrations in Channel Catfish are not as useful as knowing how Catfish will accumulate Hg relative to Bass or Walleye that are living in the same water body. Huggett et al. (2001) reported total mercury concentrations in a variety of edible fish fillets in Enid Lake in a watershed in North Mississippi. Catfish accumulated ~60% as much Hg as Largemouth Bass with fish falling into an order from lowest to highest that would intuitively match their level of piscivory, i.e. Carp<Catfish<Bass<Crappie<Gar, as shown in the excerpted Table below:

Table 2 Concentrations of mercury (mg/kg) in individual fish collected from Enid Lake

Fish type	n	Mean (S.D.)	Range
Carp	3	0.634 (0.453)	0.352-1.218
Largemouth	5	1.400 (0.300)	1.122-1.868
bass			
Gar	3	1.890 (0.307)	1.584-2.198
Black crappie	3	1.690 (0.100)	1.590-1.790
Catfish	4	0.820 (0.567)	0.425-1.660

May et al. (2000) found similar concentrations among a variety of species: Black Bass (0.2 to 1.5 mg/kg), Sunfish (<0.1 to 0.41), Channel Catfish (0.16 to 0.75) and Rainbow Trout (0.06 to 0.38) mg/kg. In this study there was no clear relationship between fish length (or mass) and mercury concentration for Catfish as shown in the table below (excerpted from May et al. 2000) This lack of a relationship might be expected for omnivorous fish. The study also noted that Hg concentrations in Catfish were similar to those measured for intermediate trophic level predators.

Davis et al. (2007) found similar Hg concentrations in Channel Catfish (0.50 mg/kg wet) and in Largemouth Bass (0.53mg/kg wet) in the Sacramento-San Joaquin Delta.

From this, and without completing an exhaustive review, we can conclude that Channel Catfish accumulate Hg at an intermediate level compared to other sport fish and that there may not be a good relationship between the size of the fish and the accumulation of Hg.

Channel Catfish Diet

Both Scott and Crossman (1973) and Holm et al (2009) confirm that catfish are opportunistic omnivores that include fish in their diet. Holm et al (2009) state that "*Larger channel catfish feed almost exclusively on fishes*." and Scott and Crossman (1973) indicate a varied invertebrate diet which also includes "*such fishes as are present in the habitat*" and "*In Canada various minnows and yellow perch predominate*".

Vigg et al. (2011) found that Channel Catfish consumed juvenile salmonids with the highest consumption in the catfish size range 401-450 mm. Tyus and Nikirk (1990) noted piscivory in larger catfish (average length 420mm). Griswald and Tubb (1977), found that catfish in Lake Erie fed on dipterans, fish and cladocerans with fish representing > 30% of the diet in April, May and July in some years.

From this, and without completing an exhaustive review, we can conclude that Channel Catfish as benthic omnivores can be partially piscivorous in some areas and it is likely that this tendency increases with larger fish.
Summary

The intent of monitoring Hg in fish for the Xeneca projects is a) to determine if Hg increases as a result of the project and b) to determine if the project increases Hg to levels that pose a threat to consumers. Catfish are a suitable species to use to monitor pre and post project accumulation of mercury because they accumulate mercury at similar levels to predator fish . In addition they have been shown to utilize fish as part of their generally omnivorous diet. Catfish are considered a sport fish but are not widely angled or consumed in Ontario. Hg levels in catfish may not provide a good reference for protection of all sport fish, unless larger catfish are used.

The two cautions are 1) there may not be a relationship between size or length and Hg accumulation and, 2) piscivory may not be prevalent in smaller fish.

We therefore recommend that catfish can be used as a good monitor of pre and post project effects on Hg uptake and that catfish > 400mm in length be used. MOE requires that at least 20 fish of 25 to 55 cm length be submitted for Hg analysis. We therefore recommend that field crews submit at least 20 Channel Catfish of 40 to 55 cm length for the required Hg analysis and that field crews target and submit, where possible, walleye and bass in the 25-55 cm range for additional analysis of Hg.

References

Davis, J.A., Greenfield, B.K., Ichikawa, G., and M. Stephenson, 2008. Mercury in sport fish from the Sacramento-San Joaquin Delta region, California, USA. Science of the Total Environment 391, 66-75.

Holm, E,, N.E. Mandrak and M. E. Burridge. 2009. The ROM Field Guide to Freshwater Fishes of Ontario. Royal Ontario Museum. 462pp.

Huggett, D.B., Stevens, J.A., Allgood, J.C., Lutken, C.B., Grace, C.A. and W.H. Benson, 2001. Mercury in sediment and fish from North Mississippi Lakes, Chemosphere 42, 923-929

May, J.T. Hothem, R.L., Alpers, C.N. and M,A. Law, 2000. Mercury Bioaccumulation in Fish in a Region Affected by Historic Gold Mining: The South Yuba River, Deer Creek and Bear River Watersheds, California, 1999. US geological Survey- open-File Report 00-367

Scott, W.B. and E.J. Crossman. 1973. Freshwater Fishes of Canada. Bulletion 184. Fisheries Research Board of Canada. 1973.

Tyus, H.M. and N.J. Nikirk, 1990. Abundance, Growth and Diet of Channel Catfish, *Ictalurus Punctatus*, in the Green and Yampa Rivers, Colorado and Utah, The Southern Naturalist 35(2):188-198.

Vigg, S., Poe, T.P., Prendergast, L.A., and H.C. Hansel, 2011. Rates of Consumption of Juvenile Salmonids and Alternative Prey Fish by Northern Squawfish, Walleyes, Smallmouth Bass and Channel Catfish in John Day Reservoir, Columbia River, Transactions of the American Fisheries Society, Vol 120, Iss. 4.

Hutchinson Environmental Sciences

Appendix B. Laboratory Certificates of Analysis

HUTCHINSON ENVIRONMENTAL SCIENCES LTD ATTN: David Leeder 3-1 Taylor Rd. Bracebridge ON P1L 1S6 Date Received:17-APR-12Report Date:23-APR-12 13:55 (MT)Version:FINAL

Client Phone: 705-645-0021

Certificate of Analysis

Lab Work Order #:

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: L1135328 NOT SUBMITTED 120022

7 inter

Lindsay D. Zuiker^l Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 60 Northland Road, Unit 1, Waterloo, ON N2V 2B8 Canada | Phone: +1 519 886 6910 | Fax: +1 519 886 9047 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 🐊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ANALYTICAL GUIDELINE REPORT

L1135328 CONTD

Page 2 of 6 23-APR-12 13:55 (MT)

Crouping Apolyto	Beault	Qualifier		Linita	Analizzat		Outstations	Limite	
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guideline	LIMITS	
L1135328-1 BIG EDDY BASELINE									
Sampled By: CLIENT on 16-APR-12 @ 13:02									
Matrix: WATER						#1			
Physical Tests									
Conductivity	29.7		3.0	umhos/cm	17-APR-12				
pH	7.33		0.10	pH units	17-APR-12	6.5-8.5			
Total Suspended Solids	<3.0		3.0	mg/L	20-APR-12				
Total Dissolved Solids	46		20	mg/L	23-APR-12				
Anions and Nutrients				Ū					
Alkalinity, Total (as CaCO3)	11		10	mg/L	17-APR-12				
Ammonia, Total (as N)	<0.050		0.050	mg/L	18-APR-12				
Chloride	<2.0		2.0	mg/L	19-APR-12				
Nitrate-N	<0.10		0.10	mg/L	19-APR-12				
Nitrite-N	<0.10		0.10	mg/L	19-APR-12				
Total Kjeldahl Nitrogen	0.29		0.15	mg/L	18-APR-12				
Total Phosphorus	0.0066		0.0030	mg/L	18-APR-12	0.02			
Sulphate	4.7		2.0	mg/L	19-APR-12				
Organic / Inorganic Carbon									
Dissolved Organic Carbon	9.1		1.0	mg/L	22-APR-12				
Total Metals									
Aluminum (Al)	0.058		0.010	mg/L	18-APR-12	*0.015			
Antimony (Sb)	<0.0050		0.0050	mg/L	18-APR-12	0.02			
Arsenic (As)	<0.0010		0.0010	mg/L	18-APR-12	0.005			
Barium (Ba)	0.017		0.010	mg/L	18-APR-12				
Beryllium (Be)	<0.0010		0.0010	mg/L	18-APR-12	0.011			
Bismuth (Bi)	<0.0010		0.0010	mg/L	18-APR-12				
Boron (B)	<0.050		0.050	mg/L	18-APR-12	0.2			
Cadmium (Cd)-Total	<0.000090		0.000090	mg/L	18-APR-12	0.0001			
Calcium (Ca)	6.08		0.50	mg/L	18-APR-12				
Chromium (Cr)	<0.00050		0.00050	mg/L	18-APR-12				
Cobalt (Co)	<0.00050		0.00050	mg/L	18-APR-12	0.0009			
Copper (Cu)	<0.0010		0.0010	mg/L	18-APR-12	0.001			
Iron (Fe)	0.167		0.050	mg/L	18-APR-12	0.3			
Lead (Pb)	<0.0010		0.0010	mg/L	18-APR-12	0.001			
Magnesium (Mg)	1.16		0.50	mg/L	18-APR-12				
Manganese (Mn)	0.0111		0.0010	mg/L	18-APR-12				
Molybdenum (Mo)	<0.0010		0.0010	mg/L	18-APR-12	0.04			
Nickel (Ni)	<0.0020		0.0020	mg/L	18-APR-12	0.025			
Potassium (K)	<1.0		1.0	mg/L	18-APR-12				
Selenium (Se)-Total	<0.00040		0.00040	mg/L	18-APR-12	0.1			
Silicon (Si)	2.7		1.0	mg/L	18-APR-12				
Silver (Ag)	<0.00010		0.00010	mg/L	18-APR-12	0.0001			
Strontium (Sr)	0.0256		0.0010	mg/L	18-APR-12				
Thallium (TI)	<0.00030		0.00030	mg/L	18-APR-12	0.0003			
Tin (Sn)	<0.0010		0.0010	mg/L	18-APR-12				
Titanium (Ti)	<0.0020		0.0020	mg/L	18-APR-12	_			
l'ungsten (W)	<0.010		0.010	mg/L	18-APR-12	0.03			
Uranium (U)	<0.0050		0.0050	mg/L	18-APR-12	0.005			
Vanadium (V)	<0.0010		0.0010	mg/L	18-APR-12	0.006			
∠ınc (∠n)	0.0191		0.0030	mg/L	18-APR-12	0.02			

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.
 Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L1135328 CONTD

Page 3 of 6 23-APR-12 13:55 (MT)

Sample Details Grouping Analyte	Result	Qualifier	וח	Unite	Analyzed		Guidelin	a Limite	
	Kesuit	Qualifiel	D.L.	Units	Analyzeu		Guidelli		
L1135328-1 BIG EDDY BASELINE									
Sampled By: CLIENT on 16-APR-12 @ 13:02									
Matrix: WATER						#1			
Total Metals									
Zirconium (Zr)	<0.0040		0.0040	mg/L	18-APR-12	0.004			
1 1135328-2 REPLICATE 1									
Sampled By: CLIENT on 16-APR-12 @ 13:15									
Matrix: WATER						#1			
Physical lests				. ,					
Conductivity	29.8		3.0	umhos/cm	17-APR-12				
рн	7.05		0.10	pH units	17-APR-12	6.5-8.5			
Total Suspended Solids	<3.0		3.0	mg/L	20-APR-12				
Anions and Nutrients	44		20	mg/∟	23-APR-12				
Alkalinity Total (as CoCO3)	~10		10	mc/l	17-ADD 10				
Ammonia Total (as NI)	< 10		0.050	mg/L	18-APP-12				
Chloride	<0.050		2.0	mg/L	10-APR-12				
Nitrate-N	<0.10		0.10	ma/l	19-APR-12				
Nitrite-N	<0.10		0.10	ma/L	19-APR-12				
Total Kjeldahl Nitrogen	0.32		0.15	mg/L	18-APR-12				
Total Phosphorus	0.0034		0.0030	mg/L	18-APR-12	0.02			
Sulphate	4.8		2.0	mg/L	19-APR-12				
Organic / Inorganic Carbon				-					
Dissolved Organic Carbon	9.2		1.0	mg/L	22-APR-12				
Total Metals									
Aluminum (Al)	0.049		0.010	mg/L	18-APR-12	*0.015			
Antimony (Sb)	<0.0050		0.0050	mg/L	18-APR-12	0.02			
Arsenic (As)	<0.0010		0.0010	mg/L	18-APR-12	0.005			
Barium (Ba)	0.017		0.010	mg/L	18-APR-12				
Beryllium (Be)	<0.0010		0.0010	mg/L	18-APR-12	0.011			
Bismuth (Bi)	<0.0010		0.0010	mg/L	18-APR-12				
Boron (B)	<0.050		0.050	mg/L	18-APR-12	0.2			
Cadmium (Cd)- I otal	<0.000090		0.000090	mg/L	18-APR-12	0.0001			
Chromium (Cr)	3.14		0.50	mg/L	10-APR-12				
Cobalt (Co)	<0.00050		0.00050	mg/L	18-APR-12	0 0009			
Copper (Cu)	<0.00000		0.00000	ma/l	18-APR-12	0.0000			
Iron (Fe)	0.171		0.050	ma/l	18-APR-12	0.3			
Lead (Pb)	<0.0010		0.0010	ma/L	18-APR-12	0.001			
Magnesium (Mg)	1.13		0.50	ma/L	18-APR-12	0.001			
Manganese (Mn)	0.0093		0.0010	mg/L	18-APR-12				
Molybdenum (Mo)	<0.0010		0.0010	mg/L	18-APR-12	0.04			
Nickel (Ni)	<0.0020		0.0020	mg/L	18-APR-12	0.025			
Potassium (K)	<1.0		1.0	mg/L	18-APR-12				
Selenium (Se)-Total	<0.00040		0.00040	mg/L	18-APR-12	0.1			
Silicon (Si)	2.6		1.0	mg/L	18-APR-12				
Silver (Ag)	<0.00010		0.00010	mg/L	18-APR-12	0.0001			
Strontium (Sr)	0.0235		0.0010	mg/L	18-APR-12				
Thallium (TI)	<0.00030		0.00030	mg/L	18-APR-12	0.0003			

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.
 Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L1135328 CONTD

Page 4 of 6 23-APR-12 13:55 (MT)

L1135282 REPLICATE 1 Sampled W CLEART on 16-APR-12 @ 13.15 Matrix WATEK Total Wate Tanulum (T) - 0.0000 0.000 mg/L 18-APR-12 0.03 Tungsen (W) 0.0000 0.000 mg/L 18-APR-12 0.03 Unanium (U) 0.0000 0.000 mg/L 18-APR-12 0.03 Vanadum (V) 0.0000 0.000 mg/L 18-APR-12 0.03 Zrconium (Z) 0.001 0.000 mg/L 18-APR-12 0.02 Zrconium (Z) 0.004 0.000 mg/L 18-APR-12 0.02 Unanium (L) 0.000 0.000 mg/L 18-APR-12 0.02 Unanium (L) 0.000 0.000 mg/L 18-APR-12 0.02 Unanium (L) 0.000 0.000 mg/L 18-APR-12 0.02 Tungsen (L) 0.000 0.000 mg/L 18-APR-12 0.02 Unanium (L) 0.000 mg/L 18-APR-12 0.02 Unanium (L) 0.000 mg/L 18-APR-12 0.02 Unanium (L) 0.000 mg/L 18-APR-	Grouping	s Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
Total Metals - - - - - - - - - - - - - - - - 0.001 mgL 18-APR-12 0.03 - 0.001 mgL 18-APR-12 0.03 - 0.001 mgL 18-APR-12 0.003 0.003 mgL 18-APR-12 0.003 0.003 0.001 mgL 18-APR-12 0.003 0.003 0.001 mgL 18-APR-12 0.003 0.004 -	L1135328-2 Sampled By: Matrix:	REPLICATE 1 CLIENT on 16-APR-12 @ 13:15 WATER						#1			
Tin (Sn)0.0010 Tiangten (W)0.0020 Uandium (V)0.0050 Zinc (Zn)0.0040 Zinc (Zn)0.0040 	Total Metals										
Tinupistino (Ti) <0.0020	Tin (Sn)		<0.0010		0.0010	mg/L	18-APR-12				
Turgsten (W) <0.010	Titanium (1	ï)	<0.0020		0.0020	mg/L	18-APR-12				
Ormanin (D) <0.000	Tungsten (N)	<0.010		0.010	mg/L	18-APR-12	0.03			
Zirocnium (Zr)	Vanadium	(V)	<0.0030		0.0030	mg/L	18-APR-12	0.005			
Zirconium (Zr) <0.0040 mg/L 18-APR-12 0.004 James All and	Zinc (Zn)		<0.0030		0.0030	mg/L	18-APR-12	0.02			
	Zirconium	Zr)	<0.0040		0.0040	mg/L	18-APR-12	0.004			

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.
 Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Reference Information

nds Listad (if : nnlicable) Moth

Methods Listed (if app	licable):	Test Description	Mathead Defenses a tret	
ALS Test Code	Matrix	l est Description	Method Reference	
ALK-WT	Water	Alkalinity, Total (as CaCO3)	EPA 310.2	
ANIONS4-WT	Water	CL,NO2,NO3,SO4	EPA 300.0 (IC)	
C-DIS-ORG-WT	Water	Dissolved Organic Carbon	APHA 5310 B-INSTRUMENTAL	
Sample is filtered throu is vaporized and the or infrared detector.	ıgh a 0.45um f ganic cabon is	ilter, sample is then injected into a h oxidized to carbon dioxide. The car	eated reaction chamber which is pa bon dioxide is transported in a carrie	cked with an oxidative catalyst. The water er gas and is measured by a non-dispersiv
EC-WT	Water	Conductivity	APHA 2510 B	
Water samples can be	measured dire	ectly by immersing the conductivity o	cell into the sample.	
MET-ONT-PWQO-WT	Water	Metals, Total PWQO	EPA 200.8 (ICP/MS)	
NH3-WT	Water	Ammonia as N	EPA 350.1	
Sample is measured concerned concerned concerned and a concerned and	olorimetrically.	When sample is turbid a distillation	step is required, sample is distilled i	into a solution of boric acid and measured
P-TOTAL-LOW-WT	Water	Phosphorus, Total, Low Level	APHA 4500-P B E	
PH-WT	Water	рН	APHA 4500 H-Electrode	
Water samples are and	alyzed directly	by a calibrated pH meter.		
Analysis conducted in Protection Act (July 1,	accordance wi 2011).	th the Protocol for Analytical Method	Is Used in the Assessment of Prope	rties under Part XV.1 of the Environmental
SOLIDS-TDS-WT	Water	Total Dissolved Solids	APHA 2540C	
A well-mixed sample is 180–10°C for 1hr.	filtered thoug	h glass fibres filter. A known volume	e of the filtrate is evaporated and drie	ed at 105–5°C overnight and then
SOLIDS-TSS-WT	Water	Total Suspended Solids	APHA 2540 D-Gravimetric	
A well-mixed sample is four hours or until a co	filtered throug	yh a weighed standard glass fibre filt s achieved.	er and the residue retained is dried i	in an oven at 105–5°C for a minimum of
TKN-WT	Water	Total Kjeldahl Nitrogen	APHA 4500-N	
Sample is digested to on by the instrument is pro-	convert the TK oportional to th	N to ammonium sulphate. The amm e concentration of ammonium sulph	nonia ions are heated to produce a c hate in the sample and is reported as	olour complex. The absorbance measured s TKN.
** ALS test methods may	y incorporate n	nodifications from specified reference	e methods to improve performance.	
Chain of Custody num	bers:			
The last two letters of	the above test	code(s) indicate the laboratory that	performed analytical analysis for the	at test. Refer to the list below:
Laboratory Definition	Code Lab	oratory Location	Laboratory Definition Code	Laboratory Location
WT	ALS ONT	ENVIRONMENTAL - WATERLOO, ARIO, CANADA		

Reference Information

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there. mg/kg - milligrams per kilogram based on dry weight of sample mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information.

••

		Workorder:	L1135328	3	Report Date:	23-APR-12		Page 1 of 10
Client: Contact:	HUTCHINSON ENVIRONI 3-1 Taylor Rd. Bracebridge ON P1L 1S6 David Leeder	MENTAL SCIENC	ES LTD					
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALK-WT	Water							
Batch WG1457920- Alkalinity, Tot	R2352317 5 CRM tal (as CaCO3)	WT-ALK-CRM	107.6		%		80-120	17-APR-12
WG1457920-2 Alkalinity, Tot	2 CVS tal (as CaCO3)		103.5		%		85-115	17-APR-12
WG1457920-3 Alkalinity, Tot	3 DUP tal (as CaCO3)	L1134495-1 424	421		mg/L	0.73	20	17-APR-12
WG1457920-4 Alkalinity, Tot	4 DUP tal (as CaCO3)	L1135236-9 174	171		mg/L	1.6	20	17-APR-12
WG1457920- Alkalinity, Tot	1 MB tal (as CaCO3)		<10		mg/L		10	17-APR-12
ANIONS4-WT	Water							
Batch WG1459270- Chloride	R2353919 5 DUP	L1135328-1 <2.0	<2.0	RPD-NA	mg/L	N/A	20	19-APR-12
Nitrite-N		<0.10	<0.10	RPD-NA	mg/L	N/A	20	19-APR-12
Nitrate-N		<0.10	<0.10	RPD-NA	mg/L	N/A	20	19-APR-12
Sulphate		4.7	4.7		mg/L	0.086	20	19-APR-12
WG1459270-3 Chloride	3 LCS		99.4		%		85-115	19-APR-12
Nitrite-N			91.0		%		85-115	19-APR-12
Nitrate-N			97.4		%		85-115	19-APR-12
Sulphate			101.4		%		85-115	19-APR-12
WG1459270-4 Chloride	4 LCSD	WG1459270-3 99.4	99.5		%	0.052	25	19-APR-12
Nitrite-N		91.0	90.6		%	0.44	25	19-APR-12
Nitrate-N		97.4	97.4		%	0.041	25	19-APR-12
Sulphate		101.4	101.7		%	0.31	25	19-APR-12

2

0.1

0.1

2

19-APR-12

19-APR-12

19-APR-12

19-APR-12

<2.0

<0.10

<0.10

<2.0

mg/L

mg/L

mg/L

mg/L

WG1459270-1

Chloride

Nitrite-N

Nitrate-N

Sulphate

C-DIS-ORG-WT

MB

Workorder: L1135328 Report Date: 23-APR-12 Page 2 of 10

Client: HUTCHINSON ENVIRONMENTAL SCIENCES LTD 3-1 Taylor Rd.

Bracebridge ON P1L 1S6

Contact: David Leeder

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
C-DIS-ORG-WT	Water							
Batch R2354327	7							
WG1459640-11 DUP		L1136000-22						
Dissolved Organic Car	bon	9.1	9.7		mg/L	6.2	20	22-APR-12
WG1459640-3 DUP		L1135352-1						
Dissolved Organic Car	bon	4.8	5.0		mg/L	2.7	20	22-APR-12
WG1450640-5 DUP		1 1135646-1						
Dissolved Organic Car	bon	3.2	3.2		ma/L	0 94	20	22-APR-12
WC1450640.7 DUD		1 4 4 2 5 9 0 4 4			5	0.01	20	
Dissolved Organic Car	bon	1 1	11		ma/l	27	20	22 400 12
	5011		1.1		iiig/L	2.1	20	22-AF N-12
WG1459640-9 DUP	h a a	L1135804-19	4.0					
Dissolved Organic Car	bon	1.3	1.3		mg/L	0.78	20	22-APR-12
WG1459640-2 LCS								
Dissolved Organic Car	bon		94.2		%		80-120	22-APR-12
WG1459640-1 MB								
Dissolved Organic Car	bon		<1.0		mg/L		1	22-APR-12
WG1459640-10 MS		L1135804-19						
Dissolved Organic Car	bon		91.8		%		70-130	22-APR-12
WG1459640-12 MS		L1136000-22						
Dissolved Organic Car	bon		79.5		%		70-130	22-APR-12
WG1459640-4 MS		L1135352-1						
Dissolved Organic Car	bon		86.3		%		70-130	22-APR-12
WG1459640-6 MS		1 1135646-1						
Dissolved Organic Car	bon	211000101	90.2		%		70-130	22-APR-12
WG1450640-8 MS		1 1125904-1						
Dissolved Organic Carl	bon	L1155604-1	90.7		%		70-130	22-APR-12
							10 100	
EC-WT	Water							
Batch R2352029	9							
WG1457837-1 CVS								
Conductivity			98.7		%		90-110	17-APR-12
WG1457837-3 DUP		L1135281-1						
Conductivity		570	568		umhos/cm	0.35	10	17-APR-12
WG1457837-4 DUP		L1135328-1						
Conductivity		29.7	29.5		umhos/cm	0.68	10	17-APR-12
WG1457837-2 MR								
Conductivity			<3.0		umhos/cm		3	17-APR-12
·								

MET-ONT-PWQO-WT

Water

Report Date: 23-APR-12

Page 3 of 10

Client: HUTCHINSON ENVIRONMENTAL SCIENCES LTD 3-1 Taylor Rd.

Workorder: L1135328

Bracebridge ON P1L 1S6

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-ONT-PWQO-WT	Water							
Batch R2352521								
WG1458365-2 CVS								
Aluminum (Al)			105.4		%		80-120	18-APR-12
Antimony (Sb)			99.7		%		80-120	18-APR-12
Arsenic (As)			98.9		%		80-120	18-APR-12
Barium (Ba)			99.7		%		80-120	18-APR-12
Beryllium (Be)			107.5		%		80-120	18-APR-12
Bismuth (Bi)			97.7		%		80-120	18-APR-12
Boron (B)			114.2		%		70-130	18-APR-12
Cadmium (Cd)-Total			105.9		%		80-120	18-APR-12
Calcium (Ca)			101.9		%		80-120	18-APR-12
Chromium (Cr)			108.3		%		80-120	18-APR-12
Cobalt (Co)			99.3		%		80-120	18-APR-12
Copper (Cu)			100.9		%		80-120	18-APR-12
Iron (Fe)			105.4		%		70-130	18-APR-12
Lead (Pb)			104.6		%		80-120	18-APR-12
Magnesium (Mg)			102.7		%		80-120	18-APR-12
Manganese (Mn)			111.4		%		80-120	18-APR-12
Molybdenum (Mo)			100.2		%		90-110	18-APR-12
Nickel (Ni)			100.8		%		80-120	18-APR-12
Potassium (K)			101.3		%		80-120	18-APR-12
Selenium (Se)-Total			100.2		%		80-120	18-APR-12
Silicon (Si)			110.3		%		70-130	18-APR-12
Silver (Ag)			108.7		%		80-120	18-APR-12
Strontium (Sr)			98.6		%		80-120	18-APR-12
Thallium (TI)			110.3		%		80-120	18-APR-12
Tin (Sn)			100.2		%		70-130	18-APR-12
Titanium (Ti)			101.9		%		80-120	18-APR-12
Tungsten (W)			102.0		%		70-130	18-APR-12
Uranium (U)			102.3		%		80-120	18-APR-12
Vanadium (V)			107.9		%		80-120	18-APR-12
Zinc (Zn)			99.2		%		80-120	18-APR-12
Zirconium (Zr)			99.2		%		80-120	18-APR-12
WG1458146-4 DUP		WG1458146	-3					
Aluminum (Al)		0.110	0.117		mg/L	6.9	20	18-APR-12
Antimony (Sb)		<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	18-APR-12

Report Date: 23-APR-12

Page 4 of 10

Client: HUTCHINSON ENVIRONMENTAL SCIENCES LTD 3-1 Taylor Rd.

Workorder: L1135328

Bracebridge ON P1L 1S6

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-ONT-PWQO-WT	Water							
Batch R2352521								
WG1458146-4 DUP Arsenic (As)		WG1458146-3 <0.0010	<0.0010	RPD-NA	mg/L	N/A	20	18-APR-12
Barium (Ba)		0.029	0.030		mg/L	2.3	20	18-APR-12
Beryllium (Be)		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	18-APR-12
Bismuth (Bi)		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	18-APR-12
Boron (B)		<0.050	<0.050	RPD-NA	mg/L	N/A	20	18-APR-12
Cadmium (Cd)-Total		<0.000090	<0.000090	RPD-NA	mg/L	N/A	20	18-APR-12
Calcium (Ca)		73.2	75.4		mg/L	2.9	20	18-APR-12
Chromium (Cr)		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	18-APR-12
Cobalt (Co)		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	18-APR-12
Copper (Cu)		0.0013	0.0014		mg/L	2.3	20	18-APR-12
Iron (Fe)		0.136	0.146		mg/L	7.2	20	18-APR-12
Lead (Pb)		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	18-APR-12
Magnesium (Mg)		17.8	18.3		mg/L	3.0	20	18-APR-12
Manganese (Mn)		0.0204	0.0211		mg/L	3.7	20	18-APR-12
Molybdenum (Mo)		0.0011	0.0010		mg/L	4.9	20	18-APR-12
Nickel (Ni)		<0.0020	<0.0020	RPD-NA	mg/L	N/A	20	18-APR-12
Potassium (K)		2.4	2.5		mg/L	2.9	20	18-APR-12
Selenium (Se)-Total		0.00045	<0.00040	RPD-NA	mg/L	N/A	20	18-APR-12
Silicon (Si)		<1.0	<1.0	RPD-NA	mg/L	N/A	20	18-APR-12
Silver (Ag)		<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	18-APR-12
Strontium (Sr)		0.905	0.916		mg/L	1.2	20	18-APR-12
Thallium (TI)		<0.00030	<0.00030	RPD-NA	mg/L	N/A	20	18-APR-12
Tin (Sn)		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	18-APR-12
Titanium (Ti)		0.0034	0.0035		mg/L	2.1	20	18-APR-12
Tungsten (W)		<0.010	<0.010	RPD-NA	mg/L	N/A	20	18-APR-12
Uranium (U)		<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	18-APR-12
Vanadium (V)		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	18-APR-12
Zinc (Zn)		<0.0030	<0.0030	RPD-NA	mg/L	N/A	20	18-APR-12
Zirconium (Zr)		<0.0040	<0.0040	RPD-NA	mg/L	N/A	20	18-APR-12
WG1458146-2 LCS Aluminum (Al)			95.0		%		80-120	18-APR-12
Antimony (Sb)			91.2		%		70-130	18-APR-12
Arsenic (As)			101.9		%		70-130	18-APR-12

Report Date: 23-APR-12

Page 5 of 10

Client: HUTCHINSON ENVIRONMENTAL SCIENCES LTD 3-1 Taylor Rd.

Workorder: L1135328

Bracebridge ON P1L 1S6

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-ONT-PWQO-WT	Water							
Batch R2352521								
WG1458146-2 LCS					0/			
Barium (Ba)			99.0		%		70-130	18-APR-12
Beryllium (Be)			92.5		%		70-130	18-APR-12
Bismuth (Bi)			102.0		%		70-130	18-APR-12
Boron (B)			86.9		%		70-130	18-APR-12
Cadmium (Cd)-Total			104.7		%		70-130	18-APR-12
Calcium (Ca)			99.0		%		70-130	18-APR-12
Chromium (Cr)			87.7		%		70-130	18-APR-12
Cobalt (Co)			102.9		%		70-130	18-APR-12
Copper (Cu)			107.5		%		70-130	18-APR-12
Iron (Fe)			90.1		%		70-130	18-APR-12
Lead (Pb)			103.8		%		70-130	18-APR-12
Magnesium (Mg)			91.9		%		70-130	18-APR-12
Manganese (Mn)			88.7		%		70-130	18-APR-12
Molybdenum (Mo)			107.8		%		70-130	18-APR-12
Nickel (Ni)			107.3		%		70-130	18-APR-12
Potassium (K)			96.1		%		70-130	18-APR-12
Selenium (Se)-Total			106.1		%		70-130	18-APR-12
Silicon (Si)			95.0		%		70-130	18-APR-12
Silver (Ag)			96.5		%		70-130	18-APR-12
Strontium (Sr)			102.6		%		70-130	18-APR-12
Thallium (TI)			103.7		%		70-130	18-APR-12
Tin (Sn)			94.7		%		70-130	18-APR-12
Titanium (Ti)			95.6		%		70-130	18-APR-12
Tungsten (W)			104.7		%		70-130	18-APR-12
Uranium (U)			99.6		%		70-130	18-APR-12
Vanadium (V)			91.8		%		70-130	18-APR-12
Zinc (Zn)			104.6		%		70-130	18-APR-12
Zirconium (Zr)			100.7		%		70-130	18-APR-12
WG1458146-1 MB								
Aluminum (Al)			<0.010		mg/L		0.01	18-APR-12
Antimony (Sb)			<0.0050		mg/L		0.005	18-APR-12
Arsenic (As)			<0.0010		mg/L		0.001	18-APR-12
Barium (Ba)			<0.010		mg/L		0.01	18-APR-12
Beryllium (Be)			<0.0010		mg/L		0.001	18-APR-12

David Leeder

Quality Control Report

Report Date: 23-APR-12

Page 6 of 10

Client: HUTCHINSON ENVIRONMENTAL SCIENCES LTD 3-1 Taylor Rd. Bracebridge ON P1L 1S6

Workorder: L1135328

Contact:

Test Matrix Reference Result Qualifier Units RPD Limit Analyzed **MET-ONT-PWQO-WT** Water R2352521 Batch WG1458146-1 MB Bismuth (Bi) < 0.0010 0.001 mg/L 18-APR-12 Boron (B) < 0.050 mg/L 0.05 18-APR-12 Cadmium (Cd)-Total 0.00009 < 0.000090 mg/L 18-APR-12 Calcium (Ca) < 0.50 mg/L 0.5 18-APR-12 0.0005 Chromium (Cr) < 0.00050 mg/L 18-APR-12 Cobalt (Co) < 0.00050 mg/L 0.0005 18-APR-12 0.001 Copper (Cu) < 0.0010 mg/L 18-APR-12 Iron (Fe) < 0.050 mg/L 0.05 18-APR-12 Lead (Pb) <0.0010 mg/L 0.001 18-APR-12 Magnesium (Mg) < 0.50 mg/L 0.5 18-APR-12 Manganese (Mn) <0.0010 mg/L 0.001 18-APR-12 0.001 Molybdenum (Mo) <0.0010 mg/L 18-APR-12 Nickel (Ni) < 0.0020 mg/L 0.002 18-APR-12 Potassium (K) <1.0 1 mg/L 18-APR-12 Selenium (Se)-Total < 0.00040 mg/L 0.0004 18-APR-12 Silicon (Si) 1 <1.0 mg/L 18-APR-12 Silver (Ag) 0.0001 < 0.00010 mg/L 18-APR-12 Strontium (Sr) <0.0010 mg/L 0.001 18-APR-12 Thallium (TI) < 0.00030 mg/L 0.0003 18-APR-12 Tin (Sn) <0.0010 0.001 mg/L 18-APR-12 Titanium (Ti) < 0.0020 0.002 mg/L 18-APR-12 Tungsten (W) < 0.010 mg/L 0.01 18-APR-12 Uranium (U) < 0.0050 mg/L 0.005 18-APR-12 Vanadium (V) < 0.0010 0.001 mg/L 18-APR-12 Zinc (Zn) < 0.0030 mg/L 0.003 18-APR-12 <0.0040 0.004 Zirconium (Zr) mg/L 18-APR-12 WG1458146-5 MS WG1458146-3 N/A MS-B % Aluminum (AI) 18-APR-12 Antimony (Sb) 95.3 % 70-130 18-APR-12 Arsenic (As) 99.9 % 70-130 18-APR-12 Barium (Ba) % 103.2 70-130 18-APR-12 Beryllium (Be) 94.0 % 70-130 18-APR-12 Bismuth (Bi) 100.4 % 70-130 18-APR-12 Boron (B) 99.96 % 18-APR-12 70-130

Workorder: L1135328

Report Date: 23-APR-12

Page 7 of 10

Client: HUTCHINSON ENVIRONMENTAL SCIENCES LTD 3-1 Taylor Rd. Bracebridge ON P1L 1S6

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-ONT-PWQO-WT	Water							
Batch R2352521								
WG1458146-5 MS		WG1458146-3			0/			
Cadmium (Cd)-Total			97.7		%		70-130	18-APR-12
Calcium (Ca)			N/A	MS-B	%		-	18-APR-12
Chromium (Cr)			97.0		%		70-130	18-APR-12
Cobalt (Co)			96.8		%		70-130	18-APR-12
Copper (Cu)			92.5		%		70-130	18-APR-12
Iron (Fe)			100.7		%		70-130	18-APR-12
Lead (Pb)			97.0		%		70-130	18-APR-12
Magnesium (Mg)			N/A	MS-B	%		-	18-APR-12
Manganese (Mn)			99.1		%		70-130	18-APR-12
Molybdenum (Mo)			97.4		%		70-130	18-APR-12
Nickel (Ni)			97.0		%		70-130	18-APR-12
Potassium (K)			100.3		%		70-130	18-APR-12
Selenium (Se)-Total			97.4		%		70-130	18-APR-12
Silicon (Si)			121.1		%		70-130	18-APR-12
Silver (Ag)			99.2		%		70-130	18-APR-12
Strontium (Sr)			N/A	MS-B	%		-	18-APR-12
Thallium (TI)			97.9		%		70-130	18-APR-12
Tin (Sn)			98.0		%		70-130	18-APR-12
Titanium (Ti)			98.1		%		70-130	18-APR-12
Tungsten (W)			105.8		%		70-130	18-APR-12
Uranium (U)			99.5		%		70-130	18-APR-12
Vanadium (V)			98.1		%		70-130	18-APR-12
Zinc (Zn)			98.8		%		70-130	18-APR-12
Zirconium (Zr)			94.2		%		70-130	18-APR-12
NH3-WT	Water							
Batch R2352537								
WG1458214-2 CVS Ammonia, Total (as N)			102.0		%		85-115	18-APR-12
WG1458214-3 DUP Ammonia, Total (as N)		L1134798-1 <0.050	<0.050	RPD-NA	mg/L	N/A	20	18-APR-12
WG1458214-5 DUP Ammonia, Total (as N)		L1135352-1 <0.050	<0.050	RPD-NA	mg/L	N/A	20	18-APR-12
WG1458214-7 DUP Ammonia, Total (as N)		L1135718-6 4.90	4.71		mg/L	4.1	20	18-APR-12

Quality Control Report

			Workorder:	L113532	8	Report Date: 23-	APR-12		Page 8 of 10
Client:	HUTCHIN 3-1 Taylor Bracebrid	ISON ENVIRON r Rd. ge ON P1L 1S	NMENTAL SCIENC	CES LTD					
Contact:	David Lee	eder							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NH3-WT		Water							
Batch WG1458214- Ammonia, T	R2352537 -1 MB fotal (as N)			<0.050		mg/L		0.05	18-APR-12
WG1458214- Ammonia, T	-4 MS otal (as N)		L1134798-1	76.8		%		75-125	18-APR-12
WG1458214- Ammonia, T	-6 MS otal (as N)		L1135352-1	90.4		%		75-125	18-APR-12
WG1458214- Ammonia, T	-8 MS otal (as N)		L1135718-6	N/A	MS-B	%		-	18-APR-12
P-TOTAL-LOW-	wт	Water							
Batch	R2352953								
WG1458247- Total Phospl	-3 DUP horus		L1134798-1 0.0069	0.0069		mg/L	0.15	20	18-APR-12
WG1458247- Total Phospl	-5 DUP horus		L1135484-1 0.0075	0.0077		mg/L	2.0	20	18-APR-12
WG1458247- Total Phospl	-2 LCS horus			99.6		%		80-120	18-APR-12
WG1458247- Total Phospl	-1 MB horus			<0.0030		mg/L		0.003	18-APR-12
WG1458247- Total Phospl	-4 MS horus		L1134798-1	100.7		%		70-130	18-APR-12
WG1458247- Total Phospl	-6 MS horus		L1135484-1	106.1		%		70-130	18-APR-12
PH-WT		Water							
Batch	R2351975								
WG1457832 - рН	-2 DUP		L1134903-2 8.22	8.14		pH units	0.98	20	17-APR-12
WG1457832- рН	-3 DUP		L1135281-1 9.53	9.58		pH units	0.52	20	17-APR-12
WG1457832- рН	-4 DUP		L1135328-1 7.33	7.13		pH units	2.8	20	17-APR-12
WG1457832- рН	-1 LCS			7.03		pH units		6.9-7.1	17-APR-12
SOLIDS-TDS-W	т	Water							
Batch	R2354538								
WG1459890- Total Dissolv	-3 DUP ved Solids		L1134715-12 970	972		mg/L	0.21	20	23-APR-12
WG1459890-	-4 DUP		L1134715-13						

Workorder: L1135328 Report Date: 23-APR-12 Page 9 of 10

Client: HUTCHINSON ENVIRONMENTAL SCIENCES LTD 3-1 Taylor Rd. Bracebridge ON P1L 1S6

Contact: David Leeder

_

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
SOLIDS-TDS-WT	Water							
Batch R2354538								
WG1459890-4 DUP Total Dissolved Solids		L1134715-13 316	314		mg/L	0.63	20	23-APR-12
WG1459890-1 LCS Total Dissolved Solids			98.7		%		70-130	23-APR-12
WG1459890-2 MB Total Dissolved Solids			<20		mg/L		20	23-APR-12
SOLIDS-TSS-WT	Water							
Batch R2353740								
WG1459107-3 DUP Total Suspended Solids		L1134507-2 4150	4150		mg/L	0.00000000)20	20-APR-12
WG1459107-4 DUP Total Suspended Solids		L1134678-4 3870	3870		mg/L	0.0	20	20-APR-12
WG1459107-5 DUP Total Suspended Solids		L1134678-13 1240	1160		mg/L	6.7	20	20-APR-12
WG1459107-6 DUP Total Suspended Solids		L1134556-2 2280	2020		mg/L	12	20	20-APR-12
WG1459107-7 DUP Total Suspended Solids		L1135041-1 1570	1470		mg/L	6.6	20	20-APR-12
WG1459107-8 DUP Total Suspended Solids		L1135041-2 1630	1600		mg/L	2.1	20	20-APR-12
WG1459107-1 LCS Total Suspended Solids			100.8		%		80-120	20-APR-12
WG1459107-2 MB Total Suspended Solids			<3.0		mg/L		3	20-APR-12
TKN-WT	Water							
Batch R2352485								
WG1458210-2 CVS Total Kjeldahl Nitrogen			92.6		%		80-120	18-APR-12
WG1458167-3 DUP Total Kjeldahl Nitrogen		L1134572-1 19.2	21.0		mg/L	9.0	20	18-APR-12
WG1458167-4 DUP Total Kjeldahl Nitrogen		L1135204-1 54.6	52.8		mg/L	3.2	20	18-APR-12
WG1458167-2 LCS Total Kjeldahl Nitrogen			96.0		%		80-120	18-APR-12
WG1458167-1 MB Total Kjeldahl Nitrogen			<0.15		mg/L		0.15	18-APR-12

Workorder: L1135328

Report Date: 23-APR-12

Client:	HUTCHINSON ENVIRONMENTAL SCIENCES LTD
	3-1 Taylor Rd.
	Bracebridge ON P1L 1S6
Contact:	David Leeder

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

S20	
ALS	

60 NORTHLAND ROAD, UNIT 1 WATERLOO, ON N2V 2B8

CHAIN OF CUSTODY / ANALYTICAL SERVICES REQUEST FORM

C of C # XXXXX PAGE <u>|</u> OF <u>|</u>

(ALS) Phone: (519) 886-6910												Serv	ice Re	quest	ed:		X	Regu	lar (default)	
ALS Environmental			DA T	OLI	-902 L FR	EE:	1-800-668-9878					Date	Requ	ired:				Priorit	y (50% surcharge)	
OMPANY NAMI	E			HES	SL		CRITERIA Criteria on report (v/n) v	—	Т				Veie	DEO	IEGT			Emer	gency (100% surcharge)	
ccount # 201	26						Reg 153/04				\square									
ROJECT MANA	GER						Table			<u>r –</u>	r	r	<u> </u>	F	K	K-		K	SUBMISSION #	
	David I	Leed	ler	_			TCLP MISA PWOO	4											111252) 0
ldress:			-				OTHER											1	ENTERED BY:	<u>-0</u>
b # 120022							REPORT ALL FINAL RESULTS WILL BE MAILED	-											RH RH	
Phone: 705-645-0021							EMAIL X FAX	-											DATE/TIME ENTERED	
x:								ER0		TSS		Ô						D-APR-12		
OTATION #Q3358	30	PO#					EMAIL1 David Leeder@environmentalsciences ca	ITAIN		S			(LL)	3						
SAM	PLING IN	FOR	MATION EMAIL2					Ś		Ť		ğ	, TP(BIN #			
Sample Date/	Time	T	/PE	N	ATF	RIX -	SELECT: pdf digital both	۳ ٩	4	효		P V	KN,						336	
Date (yy/mm/dd)	Time (24 hr)	COMP	GRAB	WATER	SOIL	OTHER	SAMPLE DESCRIPTION TO APPEAR ON REPORT	NUMBEI	Anions	AIK, EC	DOC	Metals	NH3, T						COMMENTS	LAB II
2/04/16	1302		X	x			Big Eddy Baseline	5	x	x	х	x								
2/04/16	1315		$\left \right\rangle$	x			Replicate 1	5	x	× ×	~	Ĵ	$\overline{\mathbf{v}}$							
,						1		+-	\uparrow	^	-^-									
					-			-												
						<u> </u>				!	1	I								
																	iii in			
														~ 2	a -	C O	F C	₩ (2 8) ★		<u> </u>
																1	1			┨────
	1										_									
							SPECIAL INSTRUCTIONS/COMMEN	TS						11.2			-			
													<u> </u>	<u> </u>		<u></u>				
PLED BY:	11	7											NATE 6 -						AMBIENT	11.7
	1/ Car	Clu	2	• <u>-</u>			16 AVR DOID DATE & TIME 14 Apr 2012/435				U	f			AP	0 -	- ((2	CONDITION ACCEPTABLE UPON RECEIPT (Y/N)	PF
NOTES AND 1. Quote num proper pric	ONDITIOI iber must ing.	NS: be p	rovide	ed to	ensu	е	 TAT may vary dependent on complexity of analys at time of submission. Please contact the lab to 	sis and confirm	lab wor n TATs.	kload	<u> </u>	<u></u>	- (- ;	3. Any I	known o	or suspe	ected h		relating to a sample	<u>1. IN 1865</u>

Lab Number	Description	TP1 ug/L	TP2 ug/L	Mean
T100747-0001	Half Mile Baseline upstream	4.87	5.27	5.07
T100747-0002	Half Mile Baseline downstream	5.07	5.17	5.12
T100747-0003	Big Eddy Baseline	5.17	5.37	5.27
T100747-0004	Wanatango Falls Baseline	22.47	23.47	22.97
T100747-0005	Third Falls Baseline	9.77	8.77	9.27
T100747-0006	Third Falls Baseline replicate	9.17	9.07	9.12
T100747-0007	Marter Township Baseline	190.27	191.07	190.67
T100747-0008	Wabagishik Rapids Baseline	10.47	10.97	10.72
T100747-0009	Third Chute Baseline	10.07	10.57	10.32
T100747-0010	Third Chute Baseline Replicate	11.57	10.37	10.97
T100747-0011	McGraw Falls Baseline Impoundment	10.67	11.17	10.92
T100747-0012	McGraw Falls Baseline Downstream	11.17	11.47	11.32
T100747-0013	McGraw Falls Baseline Upstream 1	7.17	7.77	7.47
T100747-0014	McGraw Falls Baseline Upstream 2	9.77	11.67	10.72
T100747-0015	McGraw Falls Baseline Replicate 1	11.47	10.97	11.22
T100747-0016	McGraw Falls Baseline Replicate 2	12.27	10.97	11.62
T100747-0017	McGraw Falls Baseline Replicate 3	7.87	7.27	7.57
T100747-0018	McGraw Falls Baseline Replicate 4	9.87	10.67	10.27
T100747-0019	Dup1	11.27	9.37	10.32
T100747-0020	Dup2	193.27	194.07	193.67
T100747-0021	Dup3	23.57	19.27	21.42

Methyl Mercury Results

Flett Research Ltd.

Method Blank 2

Method Blank 3

Mean Method Blank

440 DeSalaberry Ave. Winnipeg, MB R2L 0Y7 Fax/Phone (204) 667-2505 E-mail: flett@flettresearch.ca Webpage: http://www.flettresearch.ca MTWATR042712JS2 Page 1 of 1

CLIENT: Leeder, David - Hutchinson Environmental Matrix: Water Transaction ID: 592 3 - 1 Taylor Road PO/Contract No.: . Bracebridge, ON P1L 1S6 Date Received: April 18, 2012 Date Analysed: April 27, 2012 Sampling Date: April 16, 2012 Analyst(s): Jason S. Analytical Method: M10210: Methyl Mercury in Water by Distillation, Aqueous Ethylation, Purge and Trap, and CVAFS with Automated Instruments (Version 2) **Comments:** Sample bottles for 'HM Up #1' and 'Big Eddy #2' cracked in Flett freezer. Samples were successfully recovered before sample distillation. MDL=0.03 ng/L (based on 7 replicates of method blanks with 98% confidence level). For reporting purpose samples **Detection Limit:** 0.08 ng/L (ML), will be flagged below a ML of 0.08ng/L which is considered a practical detection limit. Estimated The estimated uncertainty of this method has preliminarily been determined to be ± 10 % at methyl mercury concentrations of 0.5 and 2.5 ng/L (95 Uncertainty: % confidence). Uncertainty at 0.1 ng/L is 13% (95% confidence). Results authorized by Dr. Robert J. Flett, Chief Scientist pg of MeHg in Mean Ethylation Gross Peak Area Blanks whole ethylation Blank (ng/L) EPA vial Ethylation blank (H₂0+Reagent) 0.49 1719 0.62 Mean Eth. Blank (last 30 runs) 0.01 Net pg MeHg in Net Method Blank whole Ethylation Gross Peak Area (ng/L) EPA vial 0.01 Method Blank 1 0.17 2330

0.22

0.01

0.14

2477

1763

0.01

0.00

0.01

		Standards		MeHg Standard Added to Ethylation EPA Vial (pg CH ₃ Hg)	Gross Peak Area	Net Corrected MeHg Std Calibration Factor (units / pg)	RSD of MeHg Standard		
			Mean Value			5959	3.0		
QUALITY DATA		Sample Spike Recovery	Sample Identification	Sample Type	Gross Peak Area	% CH₃Hg Recovery Used for Calculations	Volume of Water Sample (ml)	Net CH₃Hg as Hg (ng/L)	CH₃Hg Recovery (%)
			(HM Down #1)	MS2	355308	100%	47.9	4.15	97.4
			(HM Down #1)	MS2D	350112	100%	48.0	4.08	95.8
			Mean of Recoveries						96.6
			MeOPR ID0801 (1000ng/L)		144984	100%	0.2	954	95.4
			MeOPR ID0801 (1000ng/L)	Repeat Aliquot	172769	100%	0.2	898	89.8
		QC Samples	Mean of MeOPR					926	92.6
			A.S.SAlfa ID0702 (1000 ng/L)		342538	100%		972	97.2
LAB ID	Sampling Details	Sample ID	Date Sampled	Sample Type	Gross Peak Area	% CH₃Hg Recovery Used for Calculations	Volume of Water Sample (ml)	Net CH₃Hg as Hg (ng/L) [recovery corrected]	
57138		HM Down #1	April 16, 2012		8615	96.6	44.20	0.09	
57139		HM Down #2	April 16, 2012		8648	96.6	46.68	0.08	
57140		HM Up #1	April 16, 2012		5909	96.6	46.56	~0.04	
57141		HM Up #2	April 16, 2012		7083	96.6	46.53	~0.07	
57141		HM Up #2	April 16, 2012	Duplicate	6660	96.6	46.44	~0.06	
57142		Big Eddy #1	April 16, 2012		6274	96.6	47.27	~0.05	
57143		Big Eddy #2	April 16, 2012		9180	96.6	47.70	0.08	

* : See 'Comments' section above for discussion.

W:\Projects\2013\130003-Xeneca-2012Reports\Job\Reports\Drafts\Big Eddy\Appendix D - Laboratory Certificates of Analysis\MTWATR042712JS2.xls ~: Below the minimum level of detection for this analyte in this matrix.

This test report shall not be reproduced, except in full, without written approval of the laboratory.

Note: Results relate only to the items tested.

HUTCHINSON ENVIRONMENTAL SCIENCES LTD ATTN: David Leeder 3-1 Taylor Rd. Bracebridge ON P1L 1S6 Date Received:24-AUG-12Report Date:31-AUG-12 13:37 (MT)Version:FINAL

Client Phone: 705-645-0021

Certificate of Analysis

Lab Work Order #:

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: L1199130 NOT SUBMITTED 120022

Mary-Ly

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 60 Northland Road, Unit 1, Waterloo, ON N2V 2B8 Canada | Phone: +1 519 886 6910 | Fax: +1 519 886 9047 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ANALYTICAL GUIDELINE REPORT

L1199130 CONTD

Page 2 of 6 31-AUG-12 13:37 (MT)

Sample Detai	ls Analyte	Result	Qualifier	DI	Linits	Analyzed		Guidelin	o Limite	
Crouping	Analyte	Result		D.L.	01113	Analyzeu		Ouldelin		
L1199130-1	BID EDDY BASELINE									
Sampled By:	K.BEATTY on 23-AUG-12 @ 12:2	23					44			
Matrix:	WATER						#1			
Physical Tes	ts									
Conductivi	ity	47.0		3.0	umhos/cm	24-AUG-12				
рН		7.35		0.10	pH units	24-AUG-12	6.5-8.5			
Total Susp	pended Solids	<3.0		3.0	mg/L	30-AUG-12				
Total Diss	olved Solids	40		20	mg/L	25-AUG-12				
Anions and N	lutrients									
Alkalinity,	Total (as CaCO3)	13		10	mg/L	28-AUG-12				
Ammonia,	Total (as N)	<0.050		0.050	mg/L	28-AUG-12				
Chloride		<2.0		2.0	mg/L	25-AUG-12				
Nitrate-N		<0.10		0.10	mg/L	25-AUG-12				
Nitrite-N		<0.10		0.10	mg/L	25-AUG-12				
Total Kjeld	lahl Nitrogen	0.53		0.15	mg/L	28-AUG-12				
Total Phos	sphorus	0.0057		0.0030	mg/L	29-AUG-12	0.02			
Sulphate	rgania Carbon	4.7		2.0	mg/L	25-AUG-12				
Organic / mo		5.0		4.0		00 4110 40				
Dissolved Total Metals	Organic Carbon	5.6		1.0	mg/L	28-AUG-12				
Aluminum	(AI)	0.020		0.010	mg/L	29-AUG-12	*0.015			
Antimony	(Sb)	<0.0050		0.0050	mg/L	29-AUG-12	0.02			
Arsenic (A	s)	<0.0010		0.0010	mg/L	29-AUG-12	0.005			
Barium (Ba	a)	0.021		0.010	mg/L	29-AUG-12				
Beryllium	(Be)	<0.0010		0.0010	mg/L	30-AUG-12	0.011			
Bismuth (E	Bi)	<0.0010		0.0010	mg/L	29-AUG-12				
Boron (B)		<0.050		0.050	mg/L	30-AUG-12	0.2			
Cadmium	(Cd)-Total	<0.000090		0.000090	mg/L	29-AUG-12	0.0001			
Calcium (0	Ca)	4.31		0.50	mg/L	29-AUG-12				
Chromium	(Cr)	<0.00050		0.00050	mg/L	29-AUG-12				
Cobalt (Co	b)	<0.00050		0.00050	mg/L	29-AUG-12	0.0009			
Copper (C	u)	<0.0010		0.0010	mg/L	29-AUG-12	0.001			
Iron (Fe)		0.149		0.050	mg/L	29-AUG-12	0.3			
Lead (Pb)		<0.0010		0.0010	mg/L	29-AUG-12	0.001			
Magnesiur	m (Mg)	1.48		0.50	mg/L	29-AUG-12				
Manganes	e (Mn)	0.0253		0.0010	mg/L	29-AUG-12				
Mercury (H	lg)	<0.00010		0.00010	mg/L	26-AUG-12	0.0002			
Molybdenu	um (Mo)	<0.0010		0.0010	mg/L	29-AUG-12	0.04			
Nickel (Ni)		<0.0020		0.0020	mg/L	29-AUG-12	0.025			
Potassium	(K)	<1.0		1.0	mg/L	29-AUG-12				
Selenium	(Se)-Total	<0.00040		0.00040	mg/L	30-AUG-12	0.1			
Silicon (Si)	2.0		1.0	mg/L	29-AUG-12				
Silver (Ag)		<0.00010		0.00010	mg/L	29-AUG-12	0.0001			
Strontium		0.0355		0.0010	mg/L	29-AUG-12	0.0000			
Tin (So)	יי ווי	<0.00030		0.00030	mg/∟	29-AUG-12	0.0003			
Titanium (Ti)		<0.0010		0.0010	mg/L	29-AUG-12				
Tunasten (W)				0.0020	mg/L	29-AUG-12	0.02			
				0.010	ma/l	29-AUG-12	0.05			
Vanadium	(\/)	<0.0000		0.0000	ma/l	29-AUG-12	0.000			
vanadidili	(*/	20.0010		0.0010		20 / 00 12	0.000			

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.
 Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L1199130 CONTD

Page 3 of 6 31-AUG-12 13:37 (MT)

Ling 11 BID EDDY BASELINE Sampled By: Dot Modeline KERT Dot Modeline (1) Zinco, (Zn) <0.0030 0.0030 mg/L 29-AUG-12 0.02 Zinco, (Zn) <0.0040 0.0040 mg/L 29-AUG-12 0.004 Ling 130-2 REPLICATE 2 #1 #1 Matrix: WATER 24-AUG-12 0.004 #1 Physical Tests #1 #1 Matrix: WATER #1 #1 Physical Tests #1 #1 Total Disobved Solids 33 20 mg/L 28-AUG-12 #0.58.6 Anions and Nutrients mg/L 28-AUG-12 #1 25-AUG-12 Nitrite-N 0.0050 mg/L 28-AUG-12 0.10 mg/L 25-AUG-12 0.01 0.02 0.010 mg/L 28-	Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analvzed		Guidelin	e Limits	
Ling Subject Matrix: VATER mgl 2-AUG-12 0.02 etc Total Metais - - mgl 29-AUG-12 0.02 - <td></td>										
Jamipan by: Relation in 2010001/2 is 12.21 μ1 Total Metals 2 Q	Sompled By: K BEATTY on 22									
Mailte: Marten Marten Marten Zinco (Zn) <0.0000	Matrice WATER	-AUG-12 @ 12.23					#1			
Total Metals 0 n <t< td=""><td>Matrix: WATER</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Matrix: WATER									
Zhronium (Z) <0.0030	Total Metals									
Zirconium (Z) -0.0040 ngL 29.4UG-12 0.004	Zinc (Zn)	<0.0030		0.0030	mg/L	29-AUG-12	0.02			
L1199130-2 REPLICATE 2 ABA ABAA ABAA	Zirconium (Zr)	<0.0040		0.0040	mg/L	29-AUG-12	0.004			
Anion Gay: K.BEATTY on 22-AUG-12 @ 12:11 Matrix: #1 Physical Tests 64.9 0.10 pH unbos/cm 24-AUG-12 65-8.5 Conductivity 44.0 3.0 umbos/cm 24-AUG-12 65-8.5 Total Suspended Solids 38 20 mg/L 25-AUG-12 65-8.5 Anions and Nutrients 7 20 25-AUG-12 65-8.5 65-8.5 Aklanitry, Total (as CACO3) 11 10 mg/L 25-AUG-12 65-8.5 Object (as N) <0.050	11199130-2 REPLICATE 2									
Matrix: WATER #1 #1 Physical Tests 6.49 0.10 mmhos(m) 24-AUG-12 6.5-8.5 Total Suspended Solids 3.0 mg/L 30-AUG-12 7.5-8.5 7.5-8.5 Alkainity, Total (as CaCO3) 11 10 mg/L 25-AUG-12 7.5-8.5 Alkainity, Total (as CACO3) 11 10 mg/L 25-AUG-12 7.5-8.5 Chioride -2.0 2.0 mg/L 25-AUG-12 7.5-8.5 Chioride -2.0 2.0 mg/L 25-AUG-12 7.5-8.5 Nitrite-N -0.10 0.10 mg/L 25-AUG-12 7.5-8.5 Sulphate 4.7 2.0 mg/L 25-AUG-12 7.0-2 Total Kjeidahi Nitrogen 0.57 1.0 mg/L 28-AUG-12 7.0-2 Dissolved Organic Carbon 5.7 1.0 mg/L 28-AUG-12 7.0-2 Autimum (A) 0.022 0.010 mg/L 28-AUG-12 7.0-2 7.0-2 Bartium (Ba)	Sampled By: K BEATTY on 23	-AUG-12 @ 12.11								
Multicity Hole Multicity Multity Multity Multity	Matrix: WATER						#1			
Physical Tests Image: Conductivity 44.0 3.0 Umhos@m 24-AUG-12 5.8.5 Conductivity 6.49 0.10 pH units 24-AUG-12 5.5.8.5 Total Dissolved Solids 3.0 3.0 mg/L 30-AUG-12 5.5.8.5 Ahloen and Nutrients mg/L 25-AUG-12 7.5.4.5.8.5 7.5.8.5 Alkalinity, Total (as CaCO3) 11 10 mg/L 25-AUG-12 7.5.8.5 Alkalinity, Total (as CaCO3) 11 10 mg/L 25-AUG-12 7.5.8.5 Nitrate-N <0.10										
Conductivity 44.0 3.0 umhos/cm 24-AUG-12 Image: Conductivity Total Suspended Solids -3.0 3.0 mg/L 30-AUG-12 76.5-8.5 Total Dissolved Solids -3.0 3.0 mg/L 28-AUG-12 76.5-8.5 Anions and Nutrients	Physical Tests									
pH 6.49 0.10 pH units 24.04.05-12 66.58.6 Total Suspended Solids 38 20 mg/L 25.40.G-12 7 Anions and Nutrients 38 20 mg/L 28.40.G-12 7 Alkalinity, Total (as CaCO3) 11 10 mg/L 28.40.G-12 7 Alkalinity, Total (as CaCO3) 11 10 mg/L 28.40.G-12 7 Chioride -2.0 2.0 mg/L 28.40.G-12 7 Nitrite-N -0.10 0.10 mg/L 28.40.G-12 7 Total Kjeldah Nitrogen 0.50 0.15 mg/L 28.40.G-12 0.02 Subpate 4.7 2.0 mg/L 28.40.G-12 0.02 0.02 Organic / Inorganic Carbon 5.7 1.0 mg/L 29.40.G-12 0.02 0.02 Aluminum (A) 0.022 0.010 mg/L 29.40.G-12 0.02 0.22 Barium (Ba) 0.022 0.010 mg/L 29.40.G-12	Conductivity	44.0		3.0	umhos/cm	24-AUG-12				
Total Suspended Solids -3.0 3.0 mg/L 33.40/LG-12 Total Disolved Solids 38 20 mg/L 25.AUG-12 Anions and Nutrients - - - - Alkalnitiy, Total (as N) -0.050 0.050 mg/L 25.AUG-12 Chioride -2.0 2.0 mg/L 25.AUG-12 Nitrate-N <0.10	рН	6.49		0.10	pH units	24-AUG-12	*6.5-8.5			
Total Dissolved Solids 38 20 mg/L 25-AUG-12 Anions and Mutrients	Total Suspended Solids	<3.0		3.0	mg/L	30-AUG-12				
Antonia and Nutrients I 10 mg/L 28-AUG-12 Alkalinity, Total (as CACO3) 11 10 mg/L 28-AUG-12 Chloride -2.0 2.0 mg/L 28-AUG-12 Nitrate-N -0.050 0.050 mg/L 25-AUG-12 Nitrate-N -0.10 0.10 mg/L 25-AUG-12 Total Kjeldah Nitrogen 0.50 0.15 mg/L 25-AUG-12 Total Phosphorus 0.0065 0.030 mg/L 28-AUG-12 0.02 Sulphate 4.7 2.0 mg/L 28-AUG-12 0.02 Sulphate 4.7 2.0 mg/L 28-AUG-12 0.02 Aluminum (Al) 0.023 0.010 mg/L 29-AUG-12 0.02 Antimory (Sb) -0.0050 0.0050 mg/L 29-AUG-12 0.02 Arsenic (As) -0.0010 0.0010 mg/L 29-AUG-12 0.002 Beryllium (Be) -0.0010 0.0010 mg/L 29-AUG-12 0.0011 <t< td=""><td>I otal Dissolved Solids</td><td>38</td><td></td><td>20</td><td>mg/L</td><td>25-AUG-12</td><td></td><td></td><td></td><td></td></t<>	I otal Dissolved Solids	38		20	mg/L	25-AUG-12				
Akaininy, Iotal (as CaCOS) 11 10 mg/L 28-AUG-12 Ammonia, Total (as N) <0.050	Anions and Nutrients									
Animoting, rotar (as in) <0.030	Alkalinity, Total (as CaCO3)			10	mg/L	28-AUG-12				
Chinate-No 42.0 2.0 Ing/L 25-AUG-12 Nirate-No 40.10 0.10 mg/L 25-AUG-12 Nirate-No 40.10 0.10 mg/L 25-AUG-12 Total Kjeldahl Nitrogen 0.50 0.15 mg/L 28-AUG-12 Total Phosphorus 0.0065 0.0030 mg/L 29-AUG-12 0.02 Sulphate 4.7 2.0 mg/L 28-AUG-12 0.02 Total Medals 5.7 1.0 mg/L 29-AUG-12 0.02 Auminum (A) 0.023 0.010 mg/L 29-AUG-12 0.02 Assenic (As) <0.0010	Ammonia, Total (as N)	<0.050		2.050	mg/∟ mg/l	28-AUG-12				
Nikrie-N 40.10 0.10 Img/L 25-AUG-12 Total Kjeldahi Nitrogen 0.50 0.15 mg/L 25-AUG-12 0.02 Total Phosphorus 0.0065 0.0030 mg/L 25-AUG-12 0.02 Sulphate 4.7 2.0 mg/L 25-AUG-12 0.02 Organic / Inorganic Carbon 5.7 1.0 mg/L 25-AUG-12 0.015 Aluminum (A) 0.023 0.010 mg/L 29-AUG-12 0.02 Arsenic (As) <0.0050	Nitrate-N	<2.0		2.0	mg/L	25-AUG-12				
Tatial Kjeldahi Nitrogen 0.50 0.10 mg/L 28-AUG-12 0.02 Total Phosphorus 0.0065 0.0300 mg/L 29-AUG-12 0.02 Sulphate 4.7 2.0 mg/L 25-AUG-12 0.02 Organic / Inorganic Carbon 5.7 1.0 mg/L 29-AUG-12 0.015 Aluminum (Al) 0.023 0.010 mg/L 29-AUG-12 0.005 Antimory (Sb) <0.0050	Nitrite-N	<0.10		0.10	mg/L	25-AUG-12				
Total Phosphorus 0.0055 0.0030 mg/L 29-AUG-12 0.02 Sulphate 4.7 2.0 mg/L 25-AUG-12 0.02 Organic / Inorganic Carbon 5.7 1.0 mg/L 29-AUG-12 0.02 Total Metals 0.0023 0.010 mg/L 29-AUG-12 0.02 Atuminum (Al) 0.023 0.010 mg/L 29-AUG-12 0.02 Arsenic (As) <0.0010	Total Kieldahl Nitrogen	0.50		0.15	ma/l	28-AUG-12				
Sulphate 4.7 2.0 mg/L 25-AUG-12 Organic / Inorganic Carbon 5.7 1.0 mg/L 28-AUG-12 Total Metals	Total Phosphorus	0.0065		0.0030	ma/L	29-AUG-12	0.02			
Organic / Inorganic Carbon 5.7 1.0 mg/L 28-AUG-12 "0.015 Total Metals 0.023 0.010 mg/L 29-AUG-12 "0.015 Aluminum (Al) 0.023 0.0050 mg/L 29-AUG-12 0.015 Antimony (Sb) <0.0050	Sulphate	4.7		2.0	mg/L	25-AUG-12				
Dissolved Organic Carbon 5.7 1.0 mg/L 28-AUG-12 result Aluminum (Al) 0.023 0.010 mg/L 29-AUG-12 0.015 Antimony (Sb) <0.0050	Organic / Inorganic Carbon				Ũ					
Total Metals Image: Control of the state of	Dissolved Organic Carbon	5.7		1.0	mg/L	28-AUG-12				
Aluminum (Al) 0.023 0.010 mg/L 29-AUG-12 10.015 Antimony (Sb) <0.0050	Total Metals				-					
Antimony (Sb) <0.0050	Aluminum (Al)	0.023		0.010	mg/L	29-AUG-12	*0.015			
Arsenic (As) <0.0010	Antimony (Sb)	<0.0050		0.0050	mg/L	29-AUG-12	0.02			
Barium (Ba) 0.022 0.010 mg/L 29-AUG-12 0.011 Beryllium (Be) <0.0010	Arsenic (As)	<0.0010		0.0010	mg/L	29-AUG-12	0.005			
Beryllium (Be) <0.0010	Barium (Ba)	0.022		0.010	mg/L	29-AUG-12				
Bismuth (Bi) <0.0010 mg/L 29-AUG-12 Boron (B) <0.050	Beryllium (Be)	<0.0010		0.0010	mg/L	30-AUG-12	0.011			
Boron (B) <0.050	Bismuth (Bi)	<0.0010		0.0010	mg/L	29-AUG-12				
Cadmium (Cd)-Total <0.000090	Boron (B)	<0.050		0.050	mg/L	30-AUG-12	0.2			
Calcium (Ca) 4.31 0.50 mg/L 29-AUG-12 Chromium (Cr) 0.00058 0.00050 mg/L 30-AUG-12 0.0009 Cobalt (Co) <0.00050	Cadmium (Cd)-Total	<0.000090	0	0.000090	mg/L	29-AUG-12	0.0001			
Chromium (Cr) 0.00058 0.00050 mg/L 30-AUG-12 mg/L 0.0009 Cobalt (Co) <0.00050	Calcium (Ca)	4.31		0.50	mg/L	29-AUG-12				
Cobart (Co) <0.00050		0.00058		0.00050	mg/L	30-AUG-12				
Copper (Cu) <		<0.00050		0.00050	mg/∟	29-AUG-12	0.0009			
Hon (Fe) 0.147 0.050 Hig/L 29-A0G-12 0.3 Lead (Pb) <0.0010	Copper (Cu)	<0.0010		0.0010	mg/L	29-AUG-12	0.001			
Lead (FD) C0.0010 IIIg/L 29-A0G-12 0.0011 Magnesium (Mg) 1.50 0.50 mg/L 29-AUG-12 Manganese (Mn) 0.0236 0.0010 mg/L 29-AUG-12 Mercury (Hg) <0.00010		0.147			mg/L	29-AUG-12	0.3			
Marginesium (Wg) 1.50 0.00 mg/L 25-A0G-12 Manganese (Mn) 0.0236 0.0010 mg/L 29-AUG-12 Mercury (Hg) <0.00010	Leau (FD) Magnesium (Mg)	<0.0010		0.0010	mg/L	29-AUG-12	0.001			
Mercury (Hg) <0.00010 0.00010 mg/L 26 AUG 12 0.0002 Molybdenum (Mo) <0.0010	Manganese (Mn)	0.0236		0.00	mg/L	29-AUG-12				
Molybdenum (Mo) <0.0010 0.0010 mg/L 29-AUG-12 0.04 Nickel (Ni) <0.0020	Mercurv (Ha)	<0.00010		0.00010	ma/l	26-AUG-12	0,0002			
Nickel (Ni) <0.0020 0.0020 mg/L 29-AUG-12 0.025 Potassium (K) <1.0	Molybdenum (Mo)	<0.0010		0.0010	ma/L	29-AUG-12	0.04			
Potassium (K) <1.0 1.0 mg/L 29-AUG-12	Nickel (Ni)	<0.0020		0.0020	mg/L	29-AUG-12	0.025			
	Potassium (K)	<1.0		1.0	mg/L	29-AUG-12				
Selenium (Se)-Total <0.00040 mg/L 30-AUG-12 0.1	Selenium (Se)-Total	<0.00040		0.00040	mg/L	30-AUG-12	0.1			
Silicon (Si) 2.0 1.0 mg/L 29-AUG-12	Silicon (Si)	2.0		1.0	mg/L	29-AUG-12				
Silver (Ag) <0.00010 0.00010 mg/L 29-AUG-12 0.0001	Silver (Ag)	<0.00010	(0.00010	mg/L	29-AUG-12	0.0001			

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.
 Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L1199130 CONTD

Page 4 of 6 31-AUG-12 13:37 (MT)

Grouping A	Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L1199130-2 REI	PLICATE 2									
Sampled By: K.B	3EATTY on 23-AUG-12 @ 12:	11					#1			
Matrix: VVA	ATER									
Strontium (Sr)		0.0356		0.0010	ma/l	29-AUG-12				
Thallium (TI)		<0.00030		0.00030	mg/L	29-AUG-12	0.0003			
Tin (Sn)		<0.0010		0.0010	mg/L	29-AUG-12				
Tungsten (W)		<0.0020 <0.010		0.0020	mg/L mg/L	29-AUG-12 29-AUG-12	0.03			
Uranium (U)		<0.0050		0.0050	mg/L	29-AUG-12	0.005			
Vanadium (V) Zinc (Zn)		<0.0010		0.0010	mg/L	29-AUG-12	0.006			
Zirconium (Zr)		<0.0039		0.0030	mg/L	29-AUG-12 29-AUG-12	0.02			

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.
 Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Reference Information

Sample Parameter Qualifier key listed:

Qualifier Descripti	ion		
CINT Cooling i	initiated. Sam	nples were packaged with ice or ice	packs upon receipt.
Methods Listed (if appli	cable):		
ALS Test Code	Matrix	Test Description	Method Reference***
ALK-WT	Water	Alkalinity, Total (as CaCO3)	EPA 310.2
ANIONS4-WT	Water	CL,NO2,NO3,SO4	EPA 300.0 (IC)
C-DIS-ORG-WT	Water	Dissolved Organic Carbon	APHA 5310 B-INSTRUMENTAL
Sample is filtered throug is vaporized and the org infrared detector.	gh a 0.45um f janic cabon is	ilter, sample is then injected into a h oxidized to carbon dioxide. The car	eated reaction chamber which is packed with an oxidative catalyst. The water bon dioxide is transported in a carrier gas and is measured by a non-dispersive
EC-WT	Water	Conductivity	APHA 2510 B
Water samples can be HG-ONT-PWQO-WT	measured dire Water	ectly by immersing the conductivity o Mercury (Hg) -Total PWQO	ell into the sample. SW846 7470A
MET-ONT-PWQO-WT	Water	Metals, Total PWQO	EPA 6020A
NH3-WT	Water	Ammonia as N	EPA 350.1
Sample is measured co colorimetrically.	lorimetrically.	When sample is turbid a distillation	step is required, sample is distilled into a solution of boric acid and measured
	Water	Phosphorus, Total, Low Level	APHA 4500-P B E
	Walei	рп	APHA 4500 H-Electrode
Water samples are ana	lyzed directly	by a calibrated pH meter.	
Analysis conducted in a Protection Act (July 1, 2	ccordance wi	th the Protocol for Analytical Method	s Used in the Assessment of Properties under Part XV.1 of the Environmental
SOLIDS-TDS-WT	Water	Total Dissolved Solids	APHA 2540C
A well-mixed sample is 180–10°C for 1hr.	filtered thoug	h glass fibres filter. A known volume	of the filtrate is evaporated and dried at 105–5°C overnight and then
SOLIDS-TSS-WT	Water	Suspended solids	APHA 2540 D-Gravimetric
A well-mixed sample is four hours or until a con	filtered throug stant weight i	yh a weighed standard glass fibre filt s achieved.	er and the residue retained is dried in an oven at 105–5°C for a minimum of
TKN-WT	Water	Total Kjeldahl Nitrogen	APHA 4500-N
Sample is digested to c by the instrument is pro	onvert the TK portional to th	N to ammonium sulphate. The amm e concentration of ammonium sulph	onia ions are heated to produce a colour complex. The absorbance measured ate in the sample and is reported as TKN.
*** ALS test methods may	incorporate n	nodifications from specified referenc	e methods to improve performance.
Chain of Custody numb	ers:		
The last two letters of the	he above test	code(s) indicate the laboratory that	performed analytical analysis for that test. Refer to the list below:
Laboratory Definition	Code Lab	oratory Location	Laboratory Definition Code Laboratory Location
WT	ALS ONT	ENVIRONMENTAL - WATERLOO, ARIO, CANADA	

Reference Information

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there. mg/kg - milligrams per kilogram based on dry weight of sample mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information.

		Workorder:	L119913	30 R	eport Date:	31-AUG-12		Page 1 of 10
Client:	HUTCHINSON ENVIRO 3-1 Taylor Rd. Bracebridge ON P1L 1	DNMENTAL SCIENC	ES LTD					
Contact:	David Leeder							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALK-WT	Water							
Batch F WG1535173-7 Alkalinity, Tota	R2425049 CRM al (as CaCO3)	WT-ALK-CRM	103.7		%		80-120	28-AUG-12
WG1535173-2 Alkalinity, Tota	al (as CaCO3)		101.5		%		70-130	28-AUG-12
WG1535173-3 Alkalinity, Tota	al (as CaCO3)	L1197532-4 85	85		mg/L	0.5	20	28-AUG-12
WG1535173-4 Alkalinity, Tota	al (as CaCO3)	L1198674-1 <10	<10	RPD-NA	mg/L	N/A	20	28-AUG-12
WG1535173-5 Alkalinity, Tota	al (as CaCO3)	L1199136-1 237	241		mg/L	1.5	20	28-AUG-12
WG1535173-6 Alkalinity, Tota	al (as CaCO3)	L1199844-5 22	24		mg/L	8.0	20	28-AUG-12
WG1535173-1 Alkalinity, Tota	MB al (as CaCO3)		<10		mg/L		10	28-AUG-12
ANIONS4-WT	Water							
Batch F	R2425072							
WG1533995-3 Chloride	LCS		101.5		%		85-115	25-AUG-12
Nitrite-N			96.0		%		85-115	25-AUG-12
Nitrate-N			99.8		%		85-115	25-AUG-12
Sulphate			103.5		%		85-115	25-AUG-12
WG1533995-4	LCSD	WG1533995-3						
Chloride		101.5	101.7		%	0.2	25	25-AUG-12
Nitrite-N		96.0	96.2		%	0.2	25	25-AUG-12
Nitrate-N		99.8	100.3		%	0.5	25	25-AUG-12
Sulphate		103.5	103.7		%	0.2	25	25-AUG-12
Chloride	MR		<2.0		mg/L		2	25-AUG-12
Nitrite-N			<0.10		mg/L		0.1	25-AUG-12
Nitrate-N			<0.10		mg/L		0.1	25-AUG-12
Sulphate			<2.0		mg/L		2	25-AUG-12
C-DIS-ORG-WT	Water							
Rotch F	22426082							

WG1535197-3 DUP	L1199139-1				
Dissolved Organic Carbon	3.0 3.0	mg/L	1.7	20	28-AUG-12
WG1535197-5 DUP	L1199817-5				

Workorder: L1199130 Report Date: 31-AUG-12 Page 2 of 10

Client: HUTCHINSON ENVIRONMENTAL SCIENCES LTD 3-1 Taylor Rd.

Bracebridge ON P1L 1S6

Contact: David Leeder

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
C-DIS-ORG-WT	Water							
Batch R24	426082							
WG1535197-5	DUP	L1199817-5						
Dissolved Orgar	nic Carbon	4.3	4.3		mg/L	0.7	20	28-AUG-12
WG1535197-2 Dissolved Orgar	LCS nic Carbon		97.0		%		80-120	28-AUG-12
WG1535197-1	MB							
Dissolved Orgar	nic Carbon		<1.0		mg/L		1	28-AUG-12
WG1535197-4	MS	L1199139-1						
Dissolved Orgar	nic Carbon		80.2		%		70-130	28-AUG-12
WG1535197-6	MS	L1199817-5						
Dissolved Orgar	nic Carbon		83.7		%		70-130	28-AUG-12
EC-WT	Water							
Batch R24	424250							
WG1533395-1	cvs							
Conductivity			100.4		%		90-110	24-AUG-12
WG1533395-3	DUP	L1198634-1						
Conductivity		2720	2710		umhos/cm	0.4	10	24-AUG-12
WG1533395-4	DUP	L1199067-4						
Conductivity		2000	2000		umhos/cm	0.2	10	24-AUG-12
WG1533395-5	DUP	L1198631-3						
Conductivity		9680	9600		umhos/cm	0.9	10	24-AUG-12
WG1533395-2	MB						_	
Conductivity			<3.0		umhos/cm		3	24-AUG-12
HG-ONT-PWQO-W	T Water							
Batch R24	424055							
WG1533562-4	DUP	WG1533562-3	;					
Mercury (Hg)		<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	26-AUG-12
WG1533562-2	LCS							
Mercury (Hg)			97.0		%		80-120	26-AUG-12
WG1533562-1	MB		0.00040				0.0004	
Mercury (Hg)			<0.00010		mg/L		0.0001	26-AUG-12
WG1533562-6	MS	WG1533562-5			0/			
Mercury (Hg)			95.5		%		70-130	26-AUG-12
MET-ONT-PWQO-V	VT Water							
Batch R24	426023							
WG1535211-2	CVS		400 -		0/			
Aluminum (Al)			103.5		%		80-120	29-AUG-12
Antimony (Sb)			103.0		%		80-120	29-AUG-12

Report Date: 31-AUG-12

Page 3 of 10

Client: HUTCHINSON ENVIRONMENTAL SCIENCES LTD 3-1 Taylor Rd.

Workorder: L1199130

Bracebridge ON P1L 1S6

David Leeder

Contact:

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-ONT-PWQO-WT	Water							
Batch R2426023								
WG1535211-2 CVS					0/			
Arsenic (As)			99.1		%		80-120	29-AUG-12
Barium (Ba)			105.4		%		80-120	29-AUG-12
Bismuth (Bi)			108.0		%		80-120	29-AUG-12
Cadmium (Cd)-Total			107.9		%		80-120	29-AUG-12
Calcium (Ca)			100.5		%		80-120	29-AUG-12
Chromium (Cr)			100.8		%		80-120	29-AUG-12
Cobalt (Co)			99.2		%		80-120	29-AUG-12
Copper (Cu)			102.3		%		80-120	29-AUG-12
Iron (Fe)			90.2		%		70-130	29-AUG-12
Lead (Pb)			103.9		%		80-120	29-AUG-12
Magnesium (Mg)			104.1		%		80-120	29-AUG-12
Manganese (Mn)			104.9		%		80-120	29-AUG-12
Molybdenum (Mo)			99.6		%		90-110	29-AUG-12
Nickel (Ni)			99.2		%		80-120	29-AUG-12
Potassium (K)			99.2		%		80-120	29-AUG-12
Silicon (Si)			107.7		%		70-130	29-AUG-12
Silver (Ag)			108.6		%		80-120	29-AUG-12
Strontium (Sr)			104.1		%		80-120	29-AUG-12
Thallium (TI)			113.9		%		80-120	29-AUG-12
Tin (Sn)			100.6		%		70-130	29-AUG-12
Titanium (Ti)			93.6		%		80-120	29-AUG-12
Tungsten (W)			99.6		%		70-130	29-AUG-12
Uranium (U)			113.3		%		80-120	29-AUG-12
Vanadium (V)			94.3		%		80-120	29-AUG-12
Zinc (Zn)			96.0		%		80-120	29-AUG-12
Zirconium (Zr)			98.6		%		80-120	29-AUG-12
WG1534354-4 DUP		WG1534354-3						
Aluminum (Al)		<0.010	<0.010	RPD-NA	mg/L	N/A	20	29-AUG-12
Antimony (Sb)		<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	29-AUG-12
Arsenic (As)		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	29-AUG-12
Barium (Ba)		0.015	0.015		mg/L	0.5	20	29-AUG-12
Bismuth (Bi)		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	29-AUG-12
Cadmium (Cd)-Total		<0.000090	<0.000090	RPD-NA	mg/L	N/A	20	29-AUG-12

Report Date: 31-AUG-12

Page 4 of 10

Client: HUTCHINSON ENVIRONMENTAL SCIENCES LTD 3-1 Taylor Rd.

Workorder: L1199130

Bracebridge ON P1L 1S6

Contact: David Leeder

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-ONT-PWQO-WT	Water							
Batch R2426023								
WG1534354-4 DUP		WG1534354-3						
Calcium (Ca)		19.0	19.2		mg/L	1.3	20	29-AUG-12
Chromium (Cr)		0.00050	0.00080	J	mg/L	0.00029	0.001	29-AUG-12
Cobalt (Co)		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	29-AUG-12
Copper (Cu)		0.0120	0.0123		mg/L	2.5	20	29-AUG-12
Iron (Fe)		<0.050	<0.050	RPD-NA	mg/L	N/A	20	29-AUG-12
Lead (Pb)		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	29-AUG-12
Magnesium (Mg)		4.66	4.71		mg/L	1.0	20	29-AUG-12
Manganese (Mn)		0.0058	0.0058		mg/L	0.3	20	29-AUG-12
Molybdenum (Mo)		0.0010	0.0013	J	mg/L	0.0002	0.002	29-AUG-12
Nickel (Ni)		<0.0020	<0.0020	RPD-NA	mg/L	N/A	20	29-AUG-12
Potassium (K)		1.3	1.3		mg/L	1.6	20	29-AUG-12
Silicon (Si)		<1.0	<1.0	RPD-NA	mg/L	N/A	20	29-AUG-12
Silver (Ag)		<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	29-AUG-12
Strontium (Sr)		0.0922	0.0946		mg/L	2.6	20	29-AUG-12
Thallium (TI)		<0.00030	<0.00030	RPD-NA	mg/L	N/A	20	29-AUG-12
Tin (Sn)		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	29-AUG-12
Titanium (Ti)		<0.0020	<0.0020	RPD-NA	mg/L	N/A	20	29-AUG-12
Tungsten (W)		<0.010	<0.010	RPD-NA	mg/L	N/A	20	29-AUG-12
Uranium (U)		<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	29-AUG-12
Vanadium (V)		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	29-AUG-12
Zinc (Zn)		<0.0030	<0.0030	RPD-NA	mg/L	N/A	20	29-AUG-12
Zirconium (Zr)		<0.0040	<0.0040	RPD-NA	mg/L	N/A	20	29-AUG-12
WG1534354-2 LCS								
Aluminum (Al)			102.2		%		80-120	29-AUG-12
Antimony (Sb)			91.3		%		70-130	29-AUG-12
Arsenic (As)			102.3		%		70-130	29-AUG-12
Barium (Ba)			97.6		%		70-130	29-AUG-12
Bismuth (Bi)			92.9		%		70-130	29-AUG-12
Cadmium (Cd)-Total			91.9		%		70-130	29-AUG-12
Calcium (Ca)			105.4		%		70-130	29-AUG-12
Chromium (Cr)			97.8		%		70-130	29-AUG-12
Cobalt (Co)			95.6		%		70-130	29-AUG-12
Copper (Cu)			96.7		%		70-130	29-AUG-12

David Leeder

Quality Control Report

Report Date: 31-AUG-12

Page 5 of 10

Client: HUTCHINSON ENVIRONMENTAL SCIENCES LTD 3-1 Taylor Rd.

Workorder: L1199130

Bracebridge ON P1L 1S6

Contact:

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-ONT-PWQO-WT	Water							
Batch R2426023								
WG1534354-2 LCS								
Iron (Fe)			93.9		%		70-130	29-AUG-12
Lead (Pb)			93.6		%		70-130	29-AUG-12
Magnesium (Mg)			96.7		%		70-130	29-AUG-12
Manganese (Mn)			95.4		%		70-130	29-AUG-12
Molybdenum (Mo)			103.9		%		70-130	29-AUG-12
Nickel (Ni)			96.4		%		70-130	29-AUG-12
Potassium (K)			101.7		%		70-130	29-AUG-12
Silicon (Si)			98.8		%		70-130	29-AUG-12
Silver (Ag)			92.7		%		70-130	29-AUG-12
Strontium (Sr)			100.9		%		70-130	29-AUG-12
Thallium (TI)			93.8		%		70-130	29-AUG-12
Tin (Sn)			86.8		%		70-130	29-AUG-12
Titanium (Ti)			100.5		%		70-130	29-AUG-12
Tungsten (W)			94.8		%		70-130	29-AUG-12
Uranium (U)			85.3		%		70-130	29-AUG-12
Vanadium (V)			98.9		%		70-130	29-AUG-12
Zinc (Zn)			85.9		%		70-130	29-AUG-12
Zirconium (Zr)			94.1		%		70-130	29-AUG-12
WG1534354-1 MB								
Aluminum (Al)			<0.010		mg/L		0.01	29-AUG-12
Antimony (Sb)			<0.0050		mg/L		0.005	29-AUG-12
Arsenic (As)			<0.0010		mg/L		0.001	29-AUG-12
Barium (Ba)			<0.010		mg/L		0.01	29-AUG-12
Bismuth (Bi)			<0.0010		mg/L		0.001	29-AUG-12
Cadmium (Cd)-Total			<0.000090	D	mg/L		0.00009	29-AUG-12
Calcium (Ca)			<0.50		mg/L		0.5	29-AUG-12
Chromium (Cr)			<0.00050		mg/L		0.0005	29-AUG-12
Cobalt (Co)			<0.00050		mg/L		0.0005	29-AUG-12
Copper (Cu)			<0.0010		mg/L		0.001	29-AUG-12
Iron (Fe)			<0.050		mg/L		0.05	29-AUG-12
Lead (Pb)			<0.0010		mg/L		0.001	29-AUG-12
Magnesium (Mg)			<0.50		mg/L		0.5	29-AUG-12
Manganese (Mn)			<0.0010		mg/L		0.001	29-AUG-12
Molybdenum (Mo)			<0.0010		mg/L		0.001	29-AUG-12

Report Date: 31-AUG-12

Page 6 of 10

Client: HUTCHINSON ENVIRONMENTAL SCIENCES LTD 3-1 Taylor Rd.

Workorder: L1199130

Bracebridge ON P1L 1S6

Contact: David Leeder

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-ONT-PWQO-WT	Water							
Batch R2426023								
WG1534354-1 MB			0.0000				0.000	
NICKEI (NI)			<0.0020		mg/L		0.002	29-AUG-12
Potassium (K)			<1.0		mg/L		1	29-AUG-12
Silicon (Si)			<1.0		mg/L		1	29-AUG-12
Silver (Ag)			<0.00010		mg/L		0.0001	29-AUG-12
Strontium (Sr)			<0.0010		mg/L		0.001	29-AUG-12
Thallium (TI)			<0.00030		mg/L		0.0003	29-AUG-12
Tin (Sn)			<0.0010		mg/L		0.001	29-AUG-12
Titanium (Ti)			<0.0020		mg/L		0.002	29-AUG-12
lungsten (W)			<0.010		mg/L		0.01	29-AUG-12
Uranium (U)			<0.0050		mg/L		0.005	29-AUG-12
Vanadium (V)			<0.0010		mg/L		0.001	29-AUG-12
			<0.0030		mg/L		0.003	29-AUG-12
Zirconium (Zr)			<0.0040		mg/L		0.004	29-AUG-12
WG1534354-5 MS Aluminum (Al)		WG1534354-3	103.6		%		70 120	20 4110 12
Antimony (Sh)			92.3		%		70-130	29-AUG-12
Arsenic (As)			103.6		%		70-130	29-AUG-12
Barium (Ba)			95.7		%		70-130	29-AUG-12
Bismuth (Bi)			94.5		%		70-130	29-AUG-12
Cadmium (Cd)-Total			91.5		%		70-130	29-AUG-12
Calcium (Ca)			N/A	MS-B	%		70-130	29-AUG-12
Chromium (Cr)			97 7		%		-	29-40-12
Cobalt (Co)			97.5		%		70-130	29-40-12
Copper (Cu)			96.2		%		70-130	29-4116-12
Iron (Fe)			96.2		%		70-130	29-AUG-12
Lead (Pb)			94.9		%		70-130	29-AUG-12
Magnesium (Mg)			96.6		%		70-130	29-AUG-12
Manganese (Mn)			95.5		%		70-130	29-AUG-12
Molvbdenum (Mo)			106.2		%		70-130	29-AUG-12
Nickel (Ni)			96.3		%		70-130	29-4116-12
Potassium (K)			105.3		%		70-130	20-AUG-12
Silicon (Si)			108.7		%		70-130	20-AUG-12
Silver (Ag)			92.4		%		70-130	29-AUG-12
Strontium (Sr)			105.6		%		70-130	29-AUG-12

Workorder: L1199130

Report Date: 31-AUG-12

Page 7 of 10

Client: HUTCHINSON ENVIRONMENTAL SCIENCES LTD 3-1 Taylor Rd. Bracebridge ON P1L 1S6

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-ONT-PWQO-WT	Water							
Batch R24260	023							
WG1534354-5 MS	6	WG1534354-3			0/			
			94.0		%		70-130	29-AUG-12
Tin (Sn)			87.1		%		70-130	29-AUG-12
Titanium (Ti)			101.6		%		70-130	29-AUG-12
Tungsten (W)			95.0		%		70-130	29-AUG-12
Uranium (U)			86.8		%		70-130	29-AUG-12
Vanadium (V)			99.8		%		70-130	29-AUG-12
			86.7		%		70-130	29-AUG-12
Zirconium (Zr)			96.4		%		70-130	29-AUG-12
Batch R24270	064							
WG1537269-2 CV Bervllium (Be)	/S		106.5		%		80-120	30-AUG-12
Boron (B)			104.2		%		70-130	30-AUG-12
Chromium (Cr)			104.0		%		80-120	30-AUG-12
Selenium (Se)-Total			98.9		%		80-120	30-AUG-12
WG1534354-4 DL	JP	WG1534354-3						
Beryllium (Be)		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	30-AUG-12
Boron (B)		<0.050	<0.050	RPD-NA	mg/L	N/A	20	30-AUG-12
Selenium (Se)-Total		0.00052	<0.00040	RPD-NA	mg/L	N/A	20	30-AUG-12
WG1534354-2 LC	s							
Beryllium (Be)			113.3		%		70-130	30-AUG-12
Boron (B)			105.7		%		70-130	30-AUG-12
Selenium (Se)-Total			97.7		%		70-130	30-AUG-12
WG1534354-1 ME Beryllium (Be)	3		<0.0010		mg/L		0.001	30-AUG-12
Boron (B)			<0.050		mg/L		0.05	30-AUG-12
Selenium (Se)-Total			<0.00040		mg/L		0.0004	30-AUG-12
WG1534354-5 MS	3	WG1534354-3						
Beryllium (Be)			106.6		%		70-130	30-AUG-12
Boron (B)			110.5		%		70-130	30-AUG-12
Selenium (Se)-Total			100.7		%		70-130	30-AUG-12
NH3-WT	Water							
Batch R2425	137							
WG1535232-2 CV Ammonia, Total (as	/S N)		94.4		%		85-115	28-AUG-12
WG1535232-3 DL	JP	L1199130-1						

 Workorder: L1199130
 Report Date: 31-AUG-12
 Page 8 of 10

 HUTCHINSON ENVIRONMENTAL SCIENCES LTD

Client: HUTCHINSON ENVIRONMENTAL SCIENCES LTD 3-1 Taylor Rd.

Bracebridge ON P1L 1S6

Test	Matrix Refe	erence F	Result Q	ualifier	Units	RPD	Limit	Analyzed
NH3-WT	Water							
Batch R2425137								
WG1535232-3 DUP Ammonia, Total (as N)	L11 <0.1	1 99130-1 050	<0.050	RPD-NA	mg/L	N/A	20	28-AUG-12
WG1535232-5 DUP Ammonia, Total (as N)	L11 <0.1	1 99602-1 050	<0.050	RPD-NA	mg/L	N/A	20	28-AUG-12
WG1535232-1 MB Ammonia, Total (as N)			<0.050		mg/L		0.05	28-AUG-12
WG1535232-4 MS Ammonia, Total (as N)	L11	199130-1	93.6		%		75-125	28-AUG-12
WG1535232-6 MS Ammonia, Total (as N)	L11	199602-1	98.4		%		75-125	28-AUG-12
P-TOTAL-LOW-WT	Water							
Batch R2426024								
WG1536062-3 DUP Total Phosphorus	L11 173	199078-1 3	173		mg/L	0.3	20	29-AUG-12
WG1536062-5 DUP Total Phosphorus	L11 68.:	1 99078-14 2	68.6		mg/L	0.6	20	29-AUG-12
WG1536062-7 DUP Total Phosphorus	L11 0.00	1 99140-5 076	0.0065		mg/L	15	20	29-AUG-12
WG1536062-2 LCS Total Phosphorus		9	97.6		%		80-120	29-AUG-12
WG1536062-1 MB Total Phosphorus			<0.0030		mg/L		0.003	29-AUG-12
WG1536062-4 MS Total Phosphorus	L11	199078-1	N/A	MS-B	%		-	29-AUG-12
WG1536062-6 MS Total Phosphorus	L11	199078-14	N/A	MS-B	%		-	29-AUG-12
WG1536062-8 MS Total Phosphorus	L11	199140-5	88.0		%		70-130	29-AUG-12
PH-WT	Water							
Batch R2424242								
WG1533383-2 DUP рН	L11 7.55	1 98855-1 5	7.60		pH units	0.7	20	24-AUG-12
WG1533383-3 DUP рН	L11 7.8	1 98934-3 1	7.87		pH units	0.8	20	24-AUG-12
WG1533383-4 DUP рН	L11 2.29	1 98631-3 9 2	2.20		pH units	4.0	20	24-AUG-12
WG1533383-1 LCS рН		(6.94		pH units		6.9-7.1	24-AUG-12

Workorder: L1199130 Report Date: 31-AUG-12 Page 9 of 10

Client: HUTCHINSON ENVIRONMENTAL SCIENCES LTD 3-1 Taylor Rd.

Bracebridge ON P1L 1S6

Contact: David Leeder

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
SOLIDS-TDS-WT	Water							
Batch R2424543								
WG1533254-3 DUP Total Dissolved Solids		L1196210-1 184	184		mg/L	0.0	20	25-AUG-12
WG1533254-4 DUP Total Dissolved Solids		L1196210-2 256	244		mg/L	4.8	20	25-AUG-12
WG1533254-2 LCS Total Dissolved Solids			99.3		%		85-115	25-AUG-12
WG1533254-1 MB Total Dissolved Solids			<20		mg/L		20	25-AUG-12
SOLIDS-TSS-WT	Water							
Batch R2426617								
WG1536215-3 DUP Total Suspended Solids		L1198875-7 6000	6100		mg/L	1.7	20	30-AUG-12
WG1536215-4 DUP Total Suspended Solids		L1199037-4 2670	2730		mg/L	2.5	20	30-AUG-12
WG1536215-5 DUP Total Suspended Solids		L1199037-5 2600	2670		mg/L	2.5	20	30-AUG-12
WG1536215-6 DUP Total Suspended Solids		L1199037-7 5000	5030		mg/L	0.7	20	30-AUG-12
WG1536215-1 LCS Total Suspended Solids			99.6		%		80-120	30-AUG-12
WG1536215-2 MB Total Suspended Solids			<3.0		mg/L		3	30-AUG-12
TKN-WT	Water							
Batch R2425212								
WG1534345-4 CRM Total Kjeldahl Nitrogen		ERA525	103.3		%		80-120	28-AUG-12
WG1535427-1 CVS Total Kjeldahl Nitrogen			99.5		%		75-125	28-AUG-12
WG1534345-3 DUP Total Kjeldahl Nitrogen		L1199139-1 0.47	0.39		mg/L	18	20	28-AUG-12
WG1534345-5 DUP Total Kjeldahl Nitrogen		L1199381-3 123	127		mg/L	3.7	20	28-AUG-12
WG1534345-2 LCS Total Kjeldahl Nitrogen			101.8		%		80-120	28-AUG-12
WG1534345-1 MB Total Kjeldahl Nitrogen			<0.15		mg/L		0.15	28-AUG-12
Workorder: L1199130

Report Date: 31-AUG-12

Client:	HUTCHINSON ENVIRONMENTAL SCIENCES LTD
	3-1 Taylor Rd.
	Bracebridge ON P1L 1S6
Contact:	David Leeder

Juniaul.

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

(ALS)	Pho	ne:	(51	9) 8	B6-6	910							1	Servi	æ Red	queste	ed:		X	Regul	ar (default)	
ALS Environmental	Fax	: (5 ⁻	19) 8 ^ T	-386 יור	9047 EPF	/ :=.	1-800-668-007	8						Date	Requi	red:				Priorit	y (50% surcharge) nency (100% surcharge)	
	E	NAD.	<u>, </u>			:C.	COITERIA	Criteria on report (v/n) v		Т					YSIS	REQI	IFST		<u> </u>		INDICATE BOTTLES FIELD FILT	RED/
ccount # 201	26				-		Reg 153/04			F				$\overline{\square}$	$\overline{\nearrow}$	$\overline{}$	\square		\bigtriangledown	\bigtriangledown	PRESERVED (F/P)	
ROJECT MANA	GER						Table			ľ						د	e		r	ř	SUBMISSION #	50
	David L	eede	er					MISA PWOO													$\square p$	う
ddress:																					ENTERED BY:	$\overline{\mathbf{O}}$
ob # 120022							REPORT	ALL FINAL RESULTS WILL BE MAI	ED												Mh	Y
hone: 705-6	45-0021				_			FAX	<i>"</i>	,		6									DATE/TIME ENTERED:	1 ~
ax:				·····		Let K		TS									$ 2 \lambda $	را 🛿				
IOTATION # Q335	80	P0#	<u> </u>				- Eurit David I	eeder@environmentalscience	s ca la			DS,		ົດ	<u> </u>	:					00	TIC
SAM		TORM					EMAIL 2			3		ц Т		ğ	<u>д</u>						BIN #	27
Sample Date/Time TYPE MATRIX SELECT: pdfdigital				_ digital both	č	5	Å	а c		Ę,	NX							\bigtriangleup				
Date (yy/mm/dd)	Time (24 hr)	COMP	GRAB	WATER	soit	OTHER	SAMPLE DE	SAMPLE DESCRIPTION TO APPEAR ON REPORT			Anion	Alk, E	DOC	Metals	NH3,						COMMENTS	LA
3/041	423			X				Big Eddy Baseline		5	x	x	<u>x</u>	х	x							
2/08/2	1211		~	x				Replicate 2		5	x	x	x	x	х							
								· · · · · · · · · · · · · · · · · · ·														
					İ –					1										<u> </u>		
		-	┢──		\vdash					+			 					1	' Elii e is		·	
					-					╉									tii k			
					┢──		+			-				<u>ا</u> ر ا	1199 [.]	130-0	COFC	; , , , , , , , , , , , , , , , , , , ,				+
					┢					-												+
				<u> </u>		_				-				├ ─-			t	<u> </u>	1	1	<u> </u>	
	<u> </u>	<u> </u>	Ļ		L		<u> </u>						4	L			<u> </u>		<u> </u>	<u> </u>		
		•						SPECIAL INSTRUCTIONS/CO	MACHIS	_							<u> </u>				FROZEN	MEA
																					COLD .	JIA
		. <u> </u>		_			DATE & TIME	RECEIVED BY:							DATE &	TIME	<u> </u>				AMBIENT	<u>+</u>
KRI	SEL ~	BG	97	1	1	_	1211 2	3Ang 2012			~				DATEA	TIME -						V
LINGUISKED B	The	A	ы.	1	1		1340 2	Received at USB	•	A	3	ni			Pill	124	112	9:0				AC

White - report copy

Total Mercury Results

Flett Research Ltd. 440 DeSalaberry Ave. Winnipeg, MB R2L 0Y7

Fax/Phone (204) 667-2505 E-mail: flett@flettresearch.ca Webpage: http://www.flettresearch.ca TMWATR042512ZB2 Page 1 of 1

Date Receive Sampling Date(3-1 Taylor Road Bracebridge, ON P1L 1S6 ed: April 18, 2012 s): April 16, 2012		T PC [Transaction ID: 5 D/Contract No.: Date Analysed: 7 Analyst(s): 7	592 April 25, 2012 Zorica B.			
Analytical Metho	od: Total Mercury in Water by Oxid	dation, Purge and Trap, and CVAFS (⁻	F00120 version	5)				
Detection Lim	nit: MDL = 0.04 ng Hg/L (based on 7 re adopted for our laboratory to reflect	olicates of analytical blanks (98% confidence occasional elevated bottle blanks (< 0.5 ng/L	level)). The ML o .) observed in reus	f 0.5 ng/L, as state ed acid-cleaned T	ed in Method 1631e, has eflon bottles.	been		
timated Uncertain	ty: The estimated uncertainty of this me	ethod has preliminarily been determined to be	e ± 13 % @ 95 %	confidence at a co	ncentration level of 0.5-	1000 ng/L.		
				Mean of 3 Bubblers	Bubbler 1	Bubbler 2	Bubbler 3	
	Bubbler Blanks	Bubbler Blank Mean Bubbler Blank (pg)		1397 0.42	1337 0.40	1379 0.41	1475 0.44	
	Standards			Gross Peak Area	Net Peak Area	Area Units/ ng		
QUALITY DATA		Hg STD Mean	Sample Type	Gross Peak Area	Sample vol. (ml)	3350888 Net Total Hg conc. (ng/L)	Reagent Hg added (ng/L)	Percent Recovery
	QC Samples	OPR mean (5.12 ng/L)		630006		5.12	0.03	100
		Baker QCS (1000 ng/L)	QCS-3	335986	0.10	998.51	0.00	99.9
	Method/Bottle Blanks	125ml glass bottle(washed Apr 20/12)	MBIk-1	13621	42.77	0.03	0.02	
		F142(washed Apr 20/12)	MBlk-2	10453	36.19	0.02	0.02	
		FR205(new bottle-washed Apr 24/12)	MBIk-3	7142	43.72	-0.02	0.02	
Sample Details	Sample ID/Bottle Number	Date Sampled	Sample Type	Gross Peak Area	Sample vol. (ml)	Net Total Hg conc. (ng/L)	Reagent Hg added (ng/L)	
	HM Down #1	April 16, 2012		251964	33.54	2.21	0.02	
	HM Down #2	April 16, 2012		263909	35.24	2.21	0.02	
	HM Up #1	April 16, 2012		408943	55.36	2.18	0.02	
	HM Up #2	April 16, 2012		288015	38.97	2.18	0.02	
	Big Eddy #1	April 16, 2012		324255	32.56	2.95	0.02	
	Big Eddy #2	April 16, 2012		348051	34.87	2.96	0.03	
				*	0			

Total Mercury Results

Flett Research Ltd. 440 DeSalaberry Ave. Winnipeg, MB R2L 0Y7 Fax/Phone (204) 667-2505 E-mail: flett@flettresearch.ca Webpage: http://www.flettresearch.ca TMWATR120612ZB3 Page 1 of 1

CLIENT Date Receive Sampling Date(s Analytical Metho Detection Lim	 Leeder, David - Hutch 3-1 Taylor Road Bracebridge, ON P1L 1S6 November 22, 2012 November 19, 2012 to November 20 Total Mercury in Water by Oxidatio Total Mercury in Water by Oxidatio MDL = 0.04 ng Hg/L (based on 7 replicat adopted for our laboratory to reflect occa The estimated uncertainty of this method 	inson Environmental: 9, 2012 n, Purge and Trap, and CVAFS (TO es of analytical blanks (98% confidence le sional elevated bottle blanks (< 0.5 ng/L) has preliminarily been determined to be =	T PO D 00120 version evel)). The ML o observed in reus ± 13 % @ 95 %	Matrix: N ransaction ID: 5 /Contract No.: Date Analysed: [Analyst(s): 2 5) of 0.5 ng/L, as state sed acid-cleaned T confidence at a co	Water 592 December 6, 2012 Zorica B. ed in Method 1631e, has feflon bottles.	s been 1000 ng/L.		
	Results authorized by Dr. Robert	J. Fiell, Chief Scientist						
				Mean of 3 Bubblers	Bubbler 1	Bubbler 2	Bubbler 3	
	Bubbler Blanks	Bubbler Blank Mean		1317	1216	1624	1111	
		Bubbler Blank (pg)		0.46	0.43	0.57	0.39	
	Standards			Gross Peak Area	Net Peak Area	Area Units/		-
		Hg STD Mean				2855211		
QUALITY			Sample Type	Gross Peak Area	Sample vol. (ml)	Net Total Hg conc. (ng/L)	Reagent Hg added (ng/L)	Percent Recovery
DATA	QC Samples	OPR mean (5.12 ng/L)		506807		4.99	0.03	97
		Baker QCS (1000 ng/L)	QCS-3	277023	0.10	965.63	0.00	96.6
	Method/Bottle Blanks	Trish19	MBlk-1	7308	32.92	0.03	0.02	
		Roulet82(washed Nov 26/12)	MBlk-2	8464	33.30	0.04	0.02	
		FR40(washed Nov 26/12)	MBlk-3	6821	30.99	0.03	0.02	
	Sample Spike Recovery	Big Eddy Replicate (RUDD193)	Sample-1-US	211816	32.89	2.23	0.02	MS/MSD Hg Recovery (%) (71- 125% limit)
		Mean of Recoveries				99.50		99.5
Sample Details	Sample ID/Bottle Number	Date Sampled	Sample Type	Gross Peak Area	Sample vol. (ml)	Net Total Hg conc. (ng/L)	Reagent Hg added (ng/L)	
Marter Twp Baseline	FR38	November 19 2012		291467	33.66	3.01	0.02]
Big Eddy Baseline	FR233	November 20, 2012		254103	42.60	2.07	0.02	
Marter Twp Dup-2	FR223	November 19. 2012		267984	30.24	3.08	0.02	1
Big Eddy Replicate	RUDD193	November 20. 2012		211816	32.89	2.23	0.02	1
W:\Projects\2013\130003-Xene	ca-2012Reports\Job\Reports\Drafts\Big Eddy\Append	dix D - Laboratory Certificates of Analysis\TMWATF	R120612ZB3.xls		*: See	'Comments'	section abo	ve for discussion.
					~: Below our official d	etection limi	t for this ana	lyte in this matrix.

This test report shall not be reproduced, except in full, without written approval of the laboratory. Note: Results relate only to the items tested.

ISO/IEC17025:2005 Accredited with the Canadian Association for Laboratory Accreditation

HUTCHINSON ENVIRONMENTAL SCIENCES LTD ATTN: David Leeder 3-1 Taylor Rd. Bracebridge ON P1L 1S6 Date Received:23-NOV-12Report Date:28-NOV-12 13:33 (MT)Version:FINAL

Client Phone: 705-645-0021

Certificate of Analysis

Lab Work Order #:

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: L1241193 NOT SUBMITTED 120022

Zirker

Lindsay D. Zuiker^l Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 60 Northland Road, Unit 1, Waterloo, ON N2V 2B8 Canada | Phone: +1 519 886 6910 | Fax: +1 519 886 9047 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 🐊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ANALYTICAL GUIDELINE REPORT

L1241193 CONTD

Page 2 of 6 28-NOV-12 13:33 (MT)

Sample Details	Roc	ult Qualifier		Unite	Applyzod		Guidalia	o Limito	
Crouping Analyte					Analyzeu		Guideiin		
L1241193-1 BID EDDY E	BASELINE								
Sampled By: CLIENT on 2	20-NOV-12					#1			
Matrix: WATER						#1			
Physical Tests									
Conductivity	35.	9	3.0	umhos/cm	23-NOV-12				
рН	7.1	5	0.10	pH units	23-NOV-12	6.5-8.5			
Total Suspended Solids	<2.	D I	2.0	mg/L	24-NOV-12				
Total Dissolved Solids	34		20	mg/L	28-NOV-12				
Anions and Nutrients									
Alkalinity, Total (as CaC	CO3) 12		10	mg/L	23-NOV-12				
Ammonia, Total (as N)	<0.0	50	0.050	mg/L	26-NOV-12				
Chloride	<2.	D	2.0	mg/L	23-NOV-12				
Nitrate-N	<0.1	0	0.10	mg/L	23-NOV-12				
Nitrite-N	<0.1	0	0.10	mg/L	23-NOV-12				
Total Kjeldahl Nitrogen	0.3	5	0.15	mg/L	26-NOV-12				
Total Phosphorus	<0.00	30	0.0030	mg/L	26-NOV-12	0.02			
Sulphate	5.4		2.0	mg/L	23-NOV-12				
Organic / Inorganic Carbo	on								
Dissolved Organic Carb	on 7.0		1.0	mg/L	26-NOV-12				
Total Metals									
Aluminum (Al)	0.05	0	0.010	mg/L	26-NOV-12	*0.015			
Antimony (Sb)	<0.00	50	0.0050	mg/L	26-NOV-12	0.02			
Arsenic (As)	<0.00	10	0.0010	mg/L	26-NOV-12	0.005			
Barium (Ba)	0.01	8	0.010	mg/L	26-NOV-12				
Beryllium (Be)	<0.00	10	0.0010	mg/L	26-NOV-12	0.011			
Bismuth (Bi)	<0.00	10	0.0010	mg/L	26-NOV-12				
Boron (B)	<0.0	50	0.050	mg/L	26-NOV-12	0.2			
Cadmium (Cd)-Total	<0.000	090	0.000090	mg/L	26-NOV-12	0.0001			
Calcium (Ca)	3.5	4	0.50	mg/L	26-NOV-12				
Chromium (Cr)	<0.00	050	0.00050	mg/L	26-NOV-12				
	<0.00	050	0.00050	mg/L	26-NOV-12	0.0009			
Copper (Cu)	<0.00		0.0010	mg/∟	26-INOV-12	0.001			
Iron (Fe)	0.17	1	0.050	mg/L	26-NOV-12	0.3			
Lead (Pb)	<0.00	7	0.0010	mg/L	26-NOV-12	0.001			
Magnesium (Mg)	1.1		0.50	mg/L	26-NOV-12				
Manganese (Min)	-0.00	03	0.0010	mg/L	20-INOV-12	0 0000			
Melubdonum (Mo)	<0.00		0.00010	mg/L	23-NOV-12	0.0002			
Nickol (Ni)		20	0.0010	mg/L	20-NOV-12	0.04			
Potossium (K)	<0.00		1.0	mg/L	20-NOV-12	0.025			
Selenium (Se)-Total		5 040	0.00040	mg/L	26-NOV-12	0.1			
Silicon (Si)	26		1.0	mg/L	26-NOV-12	0.1			
Silver (An)		010	0.00010	ma/l	26-NOV-12	0 0001			
Strontium (Sr)	0.02	53	0,0010	ma/l	26-NOV-12	0.0001			
Thallium (TI)	<0.00	030	0.00030	ma/l	26-NOV-12	0.0003			
Tin (Sn)	<0.00	10	0,0010	ma/l	26-NOV-12				
Titanium (Ti)	<0.00	20	0.0020	mg/L	26-NOV-12				
Tungsten (W)	<0.0	10	0.010	mg/L	26-NOV-12	0.03			
Uranium (U)	<0.00	50	0.0050	mg/L	26-NOV-12	0.005			
Vanadium (V)	<0.00	10	0.0010	mg/L	26-NOV-12	0.006			

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.
 Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Surface Water PWQO

ANALYTICAL GUIDELINE REPORT

L1241193 CONTD

Page 3 of 6 28-NOV-12 13:33 (MT)

Sample Details	Desult	Qualifier		Linite	Amelian		0		
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ie Limits	
L1241193-1 BID EDDY BASELINE									
Sampled By: CLIENT on 20-NOV-12	2								
Matrix: WATER						#1			
Total Metals									
Zinc (Zn)	<0.0030		0.0030	mg/L	26-NOV-12	0.02			
Zirconium (Zr)	<0.0040		0.0040	mg/L	26-NOV-12	0.004			
L1241193-2 REPLICATE									
Sampled By: CLIENT on 20-NOV-12									
Matrix: WATER						#1			
Physical Tests									
Conductivity	35.8		3.0	umhos/cm	23-NOV-12				
pH	7.06		0.10	pH units	23-NOV-12	6.5-8.5			
Total Suspended Solids	<2.0		2.0	' mg/L	24-NOV-12				
Total Dissolved Solids	34		20	mg/L	28-NOV-12				
Anions and Nutrients				Ū					
Alkalinity, Total (as CaCO3)	12		10	mg/L	23-NOV-12				
Ammonia, Total (as N)	<0.050		0.050	mg/L	26-NOV-12				
Chloride	<2.0		2.0	mg/L	23-NOV-12				
Nitrate-N	<0.10		0.10	mg/L	23-NOV-12				
Nitrite-N	<0.10		0.10	mg/L	23-NOV-12				
Total Kjeldahl Nitrogen	0.27		0.15	mg/L	26-NOV-12				
Total Phosphorus	<0.0030		0.0030	mg/L	26-NOV-12	0.02			
Sulphate	5.0		2.0	mg/L	23-NOV-12				
Organic / Inorganic Carbon									
Dissolved Organic Carbon	7.0		1.0	mg/L	26-NOV-12				
lotal Metals									
Aluminum (Al)	0.041		0.010	mg/L	26-NOV-12	*0.015			
Antimony (Sb)	< 0.0050		0.0050	mg/L	26-NOV-12	0.02			
Arsenic (As)	< 0.0010		0.0010	mg/L	26-NOV-12	0.005			
Barium (Ba)	0.017		0.010	mg/L	26-NOV-12	0.014			
Beryllium (Be)	<0.0010		0.0010	mg/∟ ma/l	26-NOV-12	0.011			
Bismum (B)	<0.0010		0.0010	mg/L mg/l	26-NOV-12	0.0			
Codmium (Cd) Total	<0.000		0.000	mg/L	20-INOV-12	0.2			
Calcium (Ca)	3 37		0.000090	mg/L	26-NOV-12	0.0001			
Chromium (Cr)			0.00	mg/L	26-NOV-12				
Cobalt (Co)	<0.00050		0.00050	ma/l	26-NOV-12	0 0009			
Copper (Cu)	<0.0010		0.0010	ma/L	26-NOV-12	0.001			
lron (Fe)	0.168		0.050	ma/L	26-NOV-12	0.3			
Lead (Pb)	< 0.0010		0.0010	ma/L	26-NOV-12	0.001			
Magnesium (Mg)	1.12		0.50	mg/L	26-NOV-12				
Manganese (Mn)	0.0096		0.0010	mg/L	26-NOV-12				
Mercury (Hg)	<0.00010		0.00010	mg/L	23-NOV-12	0.0002			
Molybdenum (Mo)	<0.0010		0.0010	mg/L	26-NOV-12	0.04			
Nickel (Ni)	<0.0020		0.0020	mg/L	26-NOV-12	0.025			
Potassium (K)	<1.0		1.0	mg/L	26-NOV-12				
Selenium (Se)-Total	<0.00040		0.00040	mg/L	26-NOV-12	0.1			
Silicon (Si)	2.5		1.0	mg/L	26-NOV-12				
Silver (Ag)	<0.00010		0.00010	mg/L	26-NOV-12	0.0001			

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.
 Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Surface Water PWQO

ANALYTICAL GUIDELINE REPORT

L1241193 CONTD

Page 4 of 6 28-NOV-12 13:33 (MT)

Sample Detai Grouping	ls Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L1241193-2 Sampled By: Matrix:	REPLICATE CLIENT on 20-NOV-12 WATER						#1			
Total Metals Strontium Thallium (Tin (Sn) Titanium (Tungsten Uranium ((Sr) FI) Fi) (W) J)	0.0245 <0.00030 <0.0010 <0.0020 <0.010 <0.0050		0.0010 0.00030 0.0010 0.0020 0.010 0.0050	mg/L mg/L mg/L mg/L mg/L mg/L	26-NOV-12 26-NOV-12 26-NOV-12 26-NOV-12 26-NOV-12 26-NOV-12	0.0003 0.03 0.005			
Vanadium Zinc (Zn) Zirconium	(V) (Zr)	<0.0010 <0.0030 <0.0040		0.0010 0.0030 0.0040	mg/L mg/L mg/L	26-NOV-12 26-NOV-12 26-NOV-12	0.006 0.02 0.004			

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.
 Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

WΤ

Reference Information

Methods Listed (if applicable):

ALS Test Code	Matrix	Test Description	Method Reference***
ALK-WT	Water	Alkalinity, Total (as CaCO3)	FPA 310.2
ANIONS4-WT	Water	CL NO2 NO3 SO4	EPA 300.0 (IC)
C-DIS-ORG-WT	Water	Dissolved Organic Carbon	APHA 5310 B-INSTRUMENTAL
Sample is filtered throu is vaporized and the org infrared detector.	gh a 0.45um fi ganic cabon is	Iter, sample is then injected into a h oxidized to carbon dioxide. The car	neated reaction chamber which is packed with an oxidative catalyst. The water bon dioxide is transported in a carrier gas and is measured by a non-dispersive
EC-WT	Water	Conductivity	APHA 2510 B
Water samples can be	measured dire	ectly by immersing the conductivity of	cell into the sample.
HG-ONT-PWQO-WT	Water	Mercury (Hg) -Total PWQO	SW846 7470Å
MET-ONT-PWQO-WT	Water	Metals, Total PWQO	EPA 6020A
NH3-WT	Water	Ammonia, Total as N	EPA 350.1
Sample is measured co colorimetrically.	olorimetrically.	When sample is turbid a distillation	step is required, sample is distilled into a solution of boric acid and measured
P-TOTAL-LOW-WT	Water	Phosphorus, Total, Low Level	APHA 4500-P B E
PH-WT	Water	рН	APHA 4500 H-Electrode
Water samples are ana	lyzed directly l	by a calibrated pH meter.	
Analysis conducted in a Protection Act (July 1, 2	accordance wit 2011).	h the Protocol for Analytical Method	Is Used in the Assessment of Properties under Part XV.1 of the Environmental
SOLIDS-TDS-WT	Water	Total Dissolved Solids	APHA 2540C
A well-mixed sample is 180–10°C for 1hr.	filtered though	n glass fibres filter. A known volume	e of the filtrate is evaporated and dried at 105–5°C overnight and then
SOLIDS-TSS-WT	Water	Suspended solids	APHA 2540 D-Gravimetric
A well-mixed sample is four hours or until a cor	filtered throug	h a weighed standard glass fibre filt s achieved.	er and the residue retained is dried in an oven at 105–5°C for a minimum of
TKN-WT	Water	Total Kjeldahl Nitrogen	APHA 4500-N
Sample is digested to o by the instrument is pro	onvert the TKI portional to th	N to ammonium sulphate. The amm e concentration of ammonium sulph	nonia ions are heated to produce a colour complex. The absorbance measured nate in the sample and is reported as TKN.
*** ALS test methods may	incorporate m	nodifications from specified reference	e methods to improve performance.
Chain of Custody num	pers:		
The last two letters of t	he above test	code(s) indicate the laboratory that	performed analytical analysis for that test. Refer to the list below:
Laboratory Definition	Code Labo	oratory Location	Laboratory Definition Code Laboratory Location

ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Reference Information

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there. mg/kg - milligrams per kilogram based on dry weight of sample mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information.

Quality Control Report

			Quan	cy contr	orneport			
		Workorde	: L124119	03	Report Date: 2	28-NOV-12		Page 1 of 10
Client:	HUTCHINSON ENVIR 3-1 Taylor Rd. Bracebridge ON P1L	ONMENTAL SCIE 1S6	NCES LTD					
Contact:	David Leeder							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALK-WT	Water							
Batch WG159107 [,] Alkalinity, T	R2484023 1-5 CRM ^T otal (as CaCO3)	WT-ALK-CF	R M 111.6		%		80-120	23-NOV-12
WG159107 [,] Alkalinity, T	1-2 CVS Total (as CaCO3)		104.7		%		70-130	23-NOV-12
WG159107 [,] Alkalinity, T	1-3 DUP Total (as CaCO3)	L1240604-2 494	493		mg/L	0.0	20	23-NOV-12
WG159107 Alkalinity, T	1-4 DUP Fotal (as CaCO3)	L1241102-1 246	248		mg/L	0.9	20	23-NOV-12
WG159107 [,] Alkalinity, T	1-1 MB Total (as CaCO3)		<10		mg/L		10	23-NOV-12
ANIONS4-WT	Water							
Batch	R2483598							
WG1591220 Chloride	0-6 DUP	L1241043-3 22.5	22.5		mg/L	0.1	20	23-NOV-12
Nitrite-N		<0.10	<0.10	RPD-NA	mg/L	N/A	20	23-NOV-12
Nitrate-N		1.50	1.50		mg/L	0.0	20	23-NOV-12

Nitrate-N			1.50	1.50	mg/L	0.0	20	23-NOV-12
Sulphate			24.9	24.9	mg/L	0.1	20	23-NOV-12
WG1591220-3 Chloride	LCS			100.7	%		85-115	23-NOV-12
Nitrite-N				96.4	%		85-115	23-NOV-12
Nitrate-N				98.4	%		85-115	23-NOV-12
Sulphate				102.7	%		85-115	23-NOV-12
WG1591220-4 Chloride	LCSD		WG1591220-3 100.7	100.8	%	0.1	25	23-NOV-12
Nitrite-N			96.4	96.4	%	0.0	25	23-NOV-12
Nitrate-N			98.4	99.0	%	0.6	25	23-NOV-12
Sulphate			102.7	102.9	%	0.2	25	23-NOV-12
WG1591220-1	MB						_	
Chloride				<2.0	mg/L		2	23-NOV-12
Nitrite-N				<0.10	mg/L		0.1	23-NOV-12
Nitrate-N				<0.10	mg/L		0.1	23-NOV-12
Sulphate				<2.0	mg/L		2	23-NOV-12
C-DIS-ORG-WT		Water						

Workorder: L1241193 Report Date: 28-NOV-12 Page 2 of 10

HUTCHINSON ENVIRONMENTAL SCIENCES LTD Client: 3-1 Taylor Rd.

Bracebridge ON P1L 1S6 David Leeder

Contact:

_

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
C-DIS-ORG-WT	Water							
Batch R248532	2							
WG1592216-3 DUP Dissolved Organic Car	bon	L1241254-1 3.3	3.4		mg/L	2.4	20	26-NOV-12
WG1592216-5 DUP Dissolved Organic Car	bon	L1241193-2 7.0	6.9		mg/L	2.2	20	26-NOV-12
WG1592216-2 LCS Dissolved Organic Car	bon		92.0		%		80-120	26-NOV-12
WG1592216-1 MB Dissolved Organic Car	bon		<1.0		mg/L		1	26-NOV-12
WG1592216-4 MS Dissolved Organic Car	bon	L1241254-1	94.0		%		70-130	26-NOV-12
EC-WT	Water							
Batch R248402	5							
Conductivity			99.1		%		90-110	23-NOV-12
WG1590984-3 DUP Conductivity		L1241127-4 304	293		umhos/cm	3.6	10	23-NOV-12
WG1590984-4 DUP Conductivity		L1241281-3 44.9	45.3		umhos/cm	1.0	10	23-NOV-12
WG1590984-2 MB Conductivity			<3.0		umhos/cm		3	23-NOV-12
HG-ONT-PWQO-WT	Water							
Batch R248330	4							
WG1591290-4 DUP Mercury (Hg)		WG1591290-3 <0.00010	<0.00010	RPD-NA	mg/L	N/A	20	23-NOV-12
WG1591290-2 LCS Mercury (Hg)			91.5		%		80-120	23-NOV-12
WG1591290-1 MB Mercury (Hg)			<0.00010		mg/L		0.0001	23-NOV-12
WG1591290-6 MS Mercury (Hg)		WG1591290-5	94.1		%		70-130	23-NOV-12
MET-ONT-PWQO-WT	Water							
Batch R248443	0							
WG1592032-2 CVS Aluminum (Al)			104.8		%		80-120	26-NOV-12
Antimony (Sb)			101.7		%		80-120	26-NOV-12
Arsenic (As)			98.7		%		80-120	26-NOV-12
Barium (Ba)			101.0		%		80-120	26-NOV-12

Report Date: 28-NOV-12

Page 3 of 10

Client: HUTCHINSON ENVIRONMENTAL SCIENCES LTD 3-1 Taylor Rd.

Workorder: L1241193

Bracebridge ON P1L 1S6

Contact: David Leeder

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-ONT-PWQO-WT	Water							
Batch R2484430								
WG1592032-2 CVS								
Beryllium (Be)			112.3		%		80-120	26-NOV-12
Bismuth (Bi)			102.1		%		80-120	26-NOV-12
Boron (B)			112.9		%		70-130	26-NOV-12
Cadmium (Cd)-Total			105.9		%		80-120	26-NOV-12
Calcium (Ca)			102.5		%		80-120	26-NOV-12
Chromium (Cr)			100.6		%		80-120	26-NOV-12
Cobalt (Co)			99.0		%		80-120	26-NOV-12
Copper (Cu)			103.1		%		80-120	26-NOV-12
Iron (Fe)			104.9		%		80-120	26-NOV-12
Lead (Pb)			103.8		%		80-120	26-NOV-12
Magnesium (Mg)			102.7		%		80-120	26-NOV-12
Manganese (Mn)			107.4		%		80-120	26-NOV-12
Molybdenum (Mo)			98.4		%		90-110	26-NOV-12
Nickel (Ni)			103.0		%		80-120	26-NOV-12
Potassium (K)			98.9		%		80-120	26-NOV-12
Selenium (Se)-Total			98.5		%		80-120	26-NOV-12
Silicon (Si)			100.8		%		70-130	26-NOV-12
Silver (Ag)			105.0		%		80-120	26-NOV-12
Strontium (Sr)			97.9		%		80-120	26-NOV-12
Thallium (TI)			105.3		%		80-120	26-NOV-12
Tin (Sn)			101.0		%		70-130	26-NOV-12
Titanium (Ti)			102.4		%		80-120	26-NOV-12
Tungsten (W)			101.1		%		70-130	26-NOV-12
Uranium (U)			102.0		%		80-120	26-NOV-12
Vanadium (V)			100.5		%		80-120	26-NOV-12
Zinc (Zn)			102.2		%		80-120	26-NOV-12
Zirconium (Zr)			96.6		%		80-120	26-NOV-12
WG1591168-4 DUP		WG1591168-3						
Aluminum (Al)		0.044	0.042		mg/L	5.1	20	26-NOV-12
Antimony (Sb)		<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	26-NOV-12
Arsenic (As)		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	26-NOV-12
Barium (Ba)		0.018	0.017		mg/L	4.2	20	26-NOV-12
Beryllium (Be)		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	26-NOV-12

Report Date: 28-NOV-12

Page 4 of 10

HUTCHINSON ENVIRONMENTAL SCIENCES LTD Client: 3-1 Taylor Rd. Bracebridge ON P1L 1S6

Workorder: L1241193

David Leeder

Contact:

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-ONT-PWQO-WT	Water							
Batch R2484430								
WG1591168-4 DUP		WG1591168-	3		ma/l	NI/A	20	
Boron (B)		<0.050	<0.0010		mg/L	N/A	20	20-INOV-12
Cadmium (Cd)-Total					mg/L	N/A	20	26-NOV-12
		3 43	3.24	RPD-NA	mg/L	IN/A	20	20-INOV-12
Chromium (Cr)		<0.00050	-0 00050		mg/L	5.9 N/A	20	20-INOV-12
Cobalt (Co)		<0.00050			mg/L	IN/A	20	26-NOV-12
		<0.00050	<0.00050		mg/L	N/A	20	26-NOV-12
		<0.0010	<0.0010	RPD-NA	mg/∟	N/A	20	26-NOV-12
		0.175	0.109		mg/∟	3.8	20	26-NOV-12
		<0.0010	<0.0010	RPD-NA	mg/∟	N/A	20	26-NOV-12
Magnesium (Mg)		1.13	1.07		mg/L	5.1	20	26-NOV-12
Manganese (Mn)		0.0102	0.0099		mg/L	2.2	20	26-NOV-12
Molybdenum (Mo)		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	26-NOV-12
Nickel (Ni)		<0.0020	<0.0020	RPD-NA	mg/L	N/A	20	26-NOV-12
Potassium (K)		<1.0	<1.0	RPD-NA	mg/L	N/A	20	26-NOV-12
Selenium (Se)-Total		<0.00040	<0.00040	RPD-NA	mg/L	N/A	20	26-NOV-12
Silicon (Si)		2.5	2.4		mg/L	5.0	20	26-NOV-12
Silver (Ag)		<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	26-NOV-12
Strontium (Sr)		0.0254	0.0240		mg/L	5.7	20	26-NOV-12
Thallium (TI)		<0.00030	<0.00030	RPD-NA	mg/L	N/A	20	26-NOV-12
Tin (Sn)		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	26-NOV-12
Titanium (Ti)		<0.0020	<0.0020	RPD-NA	mg/L	N/A	20	26-NOV-12
Tungsten (W)		<0.010	<0.010	RPD-NA	mg/L	N/A	20	26-NOV-12
Uranium (U)		<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	26-NOV-12
Vanadium (V)		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	26-NOV-12
Zinc (Zn)		<0.0030	<0.0030	RPD-NA	mg/L	N/A	20	26-NOV-12
Zirconium (Zr)		<0.0040	<0.0040	RPD-NA	mg/L	N/A	20	26-NOV-12
WG1591168-2 LCS Aluminum (Al)			91.6		%		80-120	26-NOV-12
Antimony (Sb)			89.4		%		70-130	26-NOV-12
Arsenic (As)			89.1		%		70-130	26-NOV-12
Barium (Ba)			91.0		%		70-130	26-NOV-12
Beryllium (Be)			88.6		%		70-130	26-NOV-12
Bismuth (Bi)			92.2		%		70-130	26-NOV-12

Report Date: 28-NOV-12

Page 5 of 10

Client: HUTCHINSON ENVIRONMENTAL SCIENCES LTD 3-1 Taylor Rd.

Workorder: L1241193

Bracebridge ON P1L 1S6

Contact: David Leeder

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-ONT-PWQO-WT	Water							
Batch R2484430								
WG1591168-2 LCS					0/			
Boron (B)			82.9		%		70-130	26-NOV-12
			89.9		%		70-130	26-NOV-12
			92.5		%		70-130	26-NOV-12
Chromium (Cr)			89.8		%		70-130	26-NOV-12
Cobalt (Co)			88.4		%		70-130	26-NOV-12
Copper (Cu)			88.5		%		70-130	26-NOV-12
Iron (Fe)			95.3		%		70-130	26-NOV-12
Lead (Pb)			90.5		%		70-130	26-NOV-12
Magnesium (Mg)			89.5		%		70-130	26-NOV-12
Manganese (Mn)			94.6		%		70-130	26-NOV-12
Molybdenum (Mo)			89.2		%		70-130	26-NOV-12
Nickel (Ni)			88.7		%		70-130	26-NOV-12
Potassium (K)			86.8		%		70-130	26-NOV-12
Selenium (Se)-Total			88.1		%		70-130	26-NOV-12
Silicon (Si)			90.2		%		70-130	26-NOV-12
Silver (Ag)			92.6		%		70-130	26-NOV-12
Strontium (Sr)			90.3		%		70-130	26-NOV-12
Thallium (TI)			89.6		%		70-130	26-NOV-12
Tin (Sn)			91.4		%		70-130	26-NOV-12
Titanium (Ti)			90.1		%		70-130	26-NOV-12
Tungsten (W)			90.6		%		70-130	26-NOV-12
Uranium (U)			91.6		%		70-130	26-NOV-12
Vanadium (V)			91.4		%		70-130	26-NOV-12
Zinc (Zn)			88.4		%		70-130	26-NOV-12
Zirconium (Zr)			86.5		%		70-130	26-NOV-12
WG1591168-1 MB								
Aluminum (Al)			<0.010		mg/L		0.01	26-NOV-12
Antimony (Sb)			<0.0050		mg/L		0.005	26-NOV-12
Arsenic (As)			<0.0010		mg/L		0.001	26-NOV-12
Barium (Ba)			<0.010		mg/L		0.01	26-NOV-12
Beryllium (Be)			<0.0010		mg/L		0.001	26-NOV-12
Bismuth (Bi)			<0.0010		mg/L		0.001	26-NOV-12
Boron (B)			<0.050		mg/L		0.05	26-NOV-12
Cadmium (Cd)-Total			<0.00009	0	mg/L		0.00009	26-NOV-12

Client:

Contact:

Quality Control Report

 Workorder:
 L1241193
 Report Date:
 28-NOV-12
 Page
 6
 of
 10

 HUTCHINSON ENVIRONMENTAL SCIENCES LTD
 3-1 Taylor Rd.
 Bracebridge ON P1L 1S6
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 6
 6
 6
 10

 Matrix
 Reference
 Result
 Qualifier
 Units
 Report Date:
 28-NOV-12
 Page
 6
 6
 10

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-ONT-PWQO-WT	Water							
Batch R2484430								
WG1591168-1 MB							0 F	
Calcium (Ca)			<0.50		mg/L		0.5	26-NOV-12
Chromium (Cr)			<0.00050		mg/L		0.0005	26-NOV-12
Cobalt (Co)			<0.00050		mg/L		0.0005	26-NOV-12
Copper (Cu)			<0.0010		mg/L		0.001	26-NOV-12
Iron (Fe)			<0.050		mg/L		0.05	26-NOV-12
Lead (Pb)			<0.0010		mg/L		0.001	26-NOV-12
Magnesium (Mg)			<0.50		mg/L		0.5	26-NOV-12
Manganese (Mn)			<0.0010		mg/L		0.001	26-NOV-12
Molybdenum (Mo)			<0.0010		mg/L		0.001	26-NOV-12
Nickel (Ni)			<0.0020		mg/L		0.002	26-NOV-12
Potassium (K)			<1.0		mg/L		1	26-NOV-12
Selenium (Se)-Total			<0.00040		mg/L		0.0004	26-NOV-12
Silicon (Si)			<1.0		mg/L		1	26-NOV-12
Silver (Ag)			<0.00010		mg/L		0.0001	26-NOV-12
Strontium (Sr)			<0.0010		mg/L		0.001	26-NOV-12
Thallium (TI)			<0.00030		mg/L		0.0003	26-NOV-12
Tin (Sn)			<0.0010		mg/L		0.001	26-NOV-12
Titanium (Ti)			<0.0020		mg/L		0.002	26-NOV-12
Tungsten (W)			<0.010		mg/L		0.01	26-NOV-12
Uranium (U)			<0.0050		mg/L		0.005	26-NOV-12
Vanadium (V)			<0.0010		mg/L		0.001	26-NOV-12
Zinc (Zn)			<0.0030		mg/L		0.003	26-NOV-12
Zirconium (Zr)			<0.0040		mg/L		0.004	26-NOV-12
WG1591168-5 MS		WG1591168-3						
Aluminum (Al)			91.8		%		70-130	26-NOV-12
Antimony (Sb)			94.3		%		70-130	26-NOV-12
Arsenic (As)			94.0		%		70-130	26-NOV-12
Barium (Ba)			97.8		%		70-130	26-NOV-12
Beryllium (Be)			89.9		%		70-130	26-NOV-12
Bismuth (Bi)			97.7		%		70-130	26-NOV-12
Boron (B)			86.1		%		70-130	26-NOV-12
Cadmium (Cd)-Total			95.6		%		70-130	26-NOV-12
Calcium (Ca)			94.8		%		70-130	26-NOV-12
Chromium (Cr)			92.3		%		70-130	26-NOV-12

Workorder: L1241193 Report Date: 28-NOV-12 Page 7 of 10

Client: HUTCHINSON ENVIRONMENTAL SCIENCES LTD 3-1 Taylor Rd.

Bracebridge ON P1L 1S6

Contact: David Leeder

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-ONT-PWQO-WT	Water							
Batch R2484430								
WG1591168-5 MS		WG1591168-3	5					
Cobalt (Co)			91.8		%		70-130	26-NOV-12
Copper (Cu)			92.3		%		70-130	26-NOV-12
Iron (Fe)			96.9		%		70-130	26-NOV-12
Lead (Pb)			97.4		%		70-130	26-NOV-12
Magnesium (Mg)			86.9		%		70-130	26-NOV-12
Manganese (Mn)			97.5		%		70-130	26-NOV-12
Molybdenum (Mo)			91.9		%		70-130	26-NOV-12
Nickel (Ni)			94.6		%		70-130	26-NOV-12
Potassium (K)			107.4		%		70-130	26-NOV-12
Selenium (Se)-Total			85.5		%		70-130	26-NOV-12
Silicon (Si)			N/A	MS-B	%		-	26-NOV-12
Silver (Ag)			96.8		%		70-130	26-NOV-12
Strontium (Sr)			94.0		%		70-130	26-NOV-12
Thallium (TI)			97.3		%		70-130	26-NOV-12
Tin (Sn)			95.6		%		70-130	26-NOV-12
Titanium (Ti)			94.3		%		70-130	26-NOV-12
Tungsten (W)			97.8		%		70-130	26-NOV-12
Uranium (U)			99.9		%		70-130	26-NOV-12
Vanadium (V)			93.2		%		70-130	26-NOV-12
Zinc (Zn)			93.5		%		70-130	26-NOV-12
Zirconium (Zr)			87.8		%		70-130	26-NOV-12
NH3-WT	Water							
Batch R2484266								
WG1592034-2 CVS								
Ammonia, Total (as N)			99.3		%		85-115	26-NOV-12
WG1592034-3 DUP Ammonia, Total (as N)		L1240805-1 0.194	0.201		mg/L	3.6	20	26-NOV-12
WG1592034-5 DUP Ammonia, Total (as N)		L1240889-2 4.62	4.67		mg/L	1.1	20	26-NOV-12
WG1592034-7 DUP Ammonia, Total (as N)		L1241281-1 <0.050	<0.050	RPD-NA	mg/L	N/A	20	26-NOV-12
WG1592034-1 MB Ammonia, Total (as N)			<0.050		mg/L		0.05	26-NOV-12
WG1592034-4 MS Ammonia, Total (as N)		L1240805-1	88.2		%		75-125	26-NOV-12

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyze	d	
Contact:	David Leeder									
	Bracebridge ON P1L	1S6								
	3-1 Taylor Rd.									
Client:	HUTCHINSON ENVIR	ONMENTAL SCIEN	NCES LTD							
		Workorder	: L124119	3	Report Date:	28-NOV-12		Page 8	B of	10

NH3-WT	Water					
Batch R2484266						
WG1592034-6 MS	L1240889-2					
Ammonia, Total (as N)		N/A MS	S-B %		-	26-NOV-12
WG1592034-8 MS	L1241281-1					
Ammonia, Total (as N)		88.0	%		75-125	26-NOV-12
P-TOTAL-LOW-WT	Water					
Batch R2484510						
WG1592045-3 DUP	L1240910-1					
Total Phosphorus	0.853	0.811	mg/L	5.0	20	26-NOV-12
WG1592045-5 DUP	L1241133-1					
Total Phosphorus	31.4	31.4	mg/L	0.2	20	26-NOV-12
WG1592045-2 LCS						
Total Phosphorus		99.9	%		80-120	26-NOV-12
WC1502045 1 MP						
Total Phosphorus		<0.0030	ma/l		0.003	
rotari nosphorus		<0.0030	iiig/L		0.000	20-110-12
WG1592045-4 MS	L1240910-1					
Total Phosphorus		N/A MS	S-B %		-	26-NOV-12
WG1592045-6 MS	L1241133-1					
Total Phosphorus		N/A MS	S-В %		-	26-NOV-12
PH-WT	Water					
Batah B2482080						
	14/0/500000	•				
WG1590983-3 DUP	WG1590983-	2	n I I			
рн	9.41	9.59	pH units	1.9	20	23-NOV-12
WG1590983-5 DUP	L1241127-4					
рН	8.45	8.49	pH units	0.4	20	23-NOV-12
WG1500083-6 DUP	1 12/1281-3					
nH	6 77	6 65	nH units	17	20	22 NOV 12
p.,	0.17	0.00	pri unito	1.7	20	23-110 - 12
WG1590983-1 LCS						
рН		7.01	pH units		6.9-7.1	23-NOV-12
SOLIDS-TDS-WT	Water					
Batch R2487364						
WG1592561-3 DUP	L1240901-1					
Total Dissolved Solids	198	206	ma/L	4.0	20	28-NOV-12
			5			
WG1592561-4 DUP	L1240901-2	400				
i otal Dissolved Solids	162	168	mg/L	3.6	20	28-NOV-12
WG1592561-2 LCS						
Total Dissolved Solids		96.0	%		85-115	28-NOV-12
WG1592561-1 MB						

			Workorder:	L124119	3	Report Date: 28	3-NOV-12		Page 9 of 10
Client:	HUTCHIN 3-1 Taylor Bracebridg	ISON ENVIRONM [·] Rd. ge ON P1L 1S6	IENTAL SCIENC	ES LTD					
Contact:	David Lee	eder							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
SOLIDS-TDS-WT		Water							
Batch F WG1592561-1 Total Dissolve	R2487364 MB ed Solids			<20		mg/L		20	28-NOV-12
SOLIDS-TSS-WT		Water							
Batch F	R2483458								
WG1591058-4 Total Suspend	ded Solids		WG1591058-3 1600	1670		mg/L	4.1	20	24-NOV-12
WG1591058-5 Total Suspend	DUP ded Solids		L1240330-8 3400	3500		mg/L	2.9	20	24-NOV-12
WG1591058-6 Total Suspend	DUP ded Solids		L1240330-10 2970	2830		mg/L	4.6	20	24-NOV-12
WG1591058-7 Total Suspend	DUP ded Solids		L1240259-3 320	340		mg/L	6.1	20	24-NOV-12
WG1591058-8 Total Suspend	DUP ded Solids		L1240519-1 190	180		mg/L	5.4	20	24-NOV-12
WG1591058-1 Total Suspend	LCS ded Solids			97.6		%		85-115	24-NOV-12
WG1591058-2 Total Suspend	MB ded Solids			<2.0		mg/L		2	24-NOV-12
TKN-WT		Water							
Batch F	R2484307								
WG1591915-4 Total Kjeldahl	CRM Nitrogen		ERA525	98.9		%		80-120	26-NOV-12
WG1591977-1 Total Kjeldahl	CVS Nitrogen			97.0		%		75-125	26-NOV-12
WG1591915-3 Total Kjeldahl	DUP Nitrogen		L1240901-1 0.42	0.41		mg/L	3.3	20	26-NOV-12
WG1591915-5 Total Kjeldahl	DUP Nitrogen		L1241213-1 17.1	17.4		mg/L	1.7	20	26-NOV-12
WG1591915-2 Total Kjeldahl	LCS Nitrogen			103.7		%		80-120	26-NOV-12
WG1591915-1 Total Kjeldahl	MB Nitrogen			<0.15		mg/L		0.15	26-NOV-12

Workorder: L1241193

Report Date: 28-NOV-12

Client:	HUTCHINSON ENVIRONMENTAL SCIENCES LTD
	3-1 Taylor Rd.
	Bracebridge ON P1L 1S6
ontact:	David Leeder

Contact:

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

(ALS)	Pho Fax CA	one: (5 NAD	(51 (19) (A T	9) 8 886- OLL	86-6 904 FRI	910 7 <u>5</u> 2:	1-800-668-987	78						Servi Date	ce Re Requi	queste red:	ed:	· .	Ϋ́Χ	Regula Priority Emerg	ar (default) / (50% surcharge) Jency (100% surcharge)	
OMPANY NAMI				HESI	-		CRITERIA	Criteria on rep	ort (y/n) _y					ANAL	YSIS	REQ	JEST				INDICATE BOTTLES FIELD FILTER	ED/
ccount # 201	26	_					Reg 153/04				\square	\angle	\angle	\angle	\angle	\angle	\geq	\angle	\angle	\angle	PRESERVED (F/P)	
ROJECT MANA	GER						Table														SUBMISSION #	
	David L	eed	er					MISA	PWQO												4071	M
ldress:																					ENTERED BY:	$\overline{\frown}$
b # 120022							REPORT	ALL FINAL R	RESULTS WILL BE MAILED				1						1		ML	
one: 705-6	45-0021						EMAIL X	FAX				S									DATE/TIME ENTERED:	
к:						_	1	David.Leeder@environmentalsciences.ca_				Š			_						11/2	12
DTATION # Q335	BO	PC#					EMAIL1 David.					DS,		ີ	Ľ,						mas	10
SAM	PLING IN	FOR	ATIC	DN		_	EMAIL2	()		8		H, T		ğ	, TP					1	BIN#	
Sample Date	/Time	ΤY	'PE	N	ATR	RIX.	SELECT: pdf	_ digital b	poth	ы В	7	۵ ن		Ę.	TKN						d 20)
Date (yy/mm/dd)	Time (24 hr)	CONP	GRAB	WATER	soit	OTHER	SAMPLE DE		APPEAR ON REPORT	NUMBE	Anions	AIK. E(ö	Metals	NH3, ⁷						COMMENTS	LAB
				х				Big Eddy Ba	aseline	5	x	х	x	x	x						-	+1
				x				Replicat	e 🕱	5	x	х	x	х	x							う
									<u> </u>		<u> </u>											
			<u> </u>																			
				\vdash									<u> </u>									
						-				-			 								·	
		 												י -		m n. i. 1811	Giffiliù				N	
						ļ	<u> </u>						 	L N N			AN W					<u> </u>
																	34119	3-CC	OFC			
										1		1				614	24110				•	l
						Γ								Γ.			I		1			
						Γ				—	1											
		L	<u> </u>	L	<u> </u>	<u>ا</u>		SPECIAL I	NSTRUCTIONS/COMMEN	TS	<u> </u>	· · · ·	<u> </u>				L		المجمع الم		SAMPLE CONDIT	ION
																					FROZEN	MEAN
																					COLD	+
PLED BY:					b		DATE & TIME		RECEIVED BY:				7-		DATE &	TIME					CONDITION ACCEPTABLE	IN
LKA_	usin	<u>/ </u>	RIS	٢١	BEA	177	100V 20	, 2012	lla				<u> </u>			718.00					UPON RECEIPT (Y/N)	1 U

۱.

•

Methyl Mercury Results

Flett Research Ltd.

440 DeSalaberry Ave. Winnipeg, MB R2L 0Y7 Fax/Phone (204) 667-2505 E-mail: flett@flettresearch.ca Webpage: http://www.flettresearch.ca MTWATR120112JS2 Page 1 of 1

	CLIENT: Leeder, David - Hutchinson Environmental Matrix: Water 3: 1 Taylor Road Transaction ID: 592 Bracebridge, ON P1L 1S6 PO/Contract No.: : Date Received: November 22, 2012 Date Analysed: December 1, 2012 Sampling Date: November 19, 2012 to November 20, 2012 Date Analysed: December 1, 2012 Analytical Method: M10210: Methyl Mercury in Water by Distillation, Aqueous Ethylation, Purge and Trap, and CVAFS with Automated Instruments (Version 2) Detection Limit: 0.08 ng/L (ML), MDL=0.03 ng/L (based on 7 replicates of method blanks with 98% confidence level). For reporting purpose samples will be flagged below a ML of 0.08ng/L which is considered a practical detection limit. Estimated Uncertainty The estimated uncertainty of this method has preliminarily been determined to be ± 10 % at methyl mercury concentrations of 0.5 and 2.5 ng/L (95 % confidence). Uncertainty at 0.1 ng/L is 13% (95% confidence). Results authorized by Dr. Robert J. Flett, Chief Scientist											
			T	ng of Molla in			[
		Blanks		pg of MeHg in whole ethylation EPA vial	Gross Peak Area	Mean Ethylation Blank (ng/L)						
			Ethylation blank (H ₂ 0+Reagent)	0.52	1505							
			Mean Eth. Blank (last 30 runs)	0.55		0.01						
				Net pg MeHg in whole Ethylation EPA vial	Gross Peak Area	Net Method Blank (ng/L)						
			Method Blank 1	0.11	1836	0.01						
			Method Blank 2	0.12	1857	0.01						
			Method Blank 3	0.14	1914	0.01						
				0.13		0.01						
		Standards		MeHg Standard Added to Ethylation EPA Vial (pg CH ₃ Hg)	Gross Peak Area	Net Corrected MeHg Std Calibration Factor (units / pg)	RSD of MeHg Standard					
			Mean Value			4959	2.3					
	QUALITY DATA	Sample Spike Recovery	Sample Identification	Sample Type	Gross Peak Area	% CH₃Hg Recovery Used for Calculations	Volume of Water Sample (ml)	Net CH₃Hg as Hg (ng/L)	CH₃Hg Recovery (%)			
			Big Eddy Baseline (FR124)	MS2	293843	100%	47.6	4.00	93.2			
			Big Eddy Baseline (FR124)	MS2D	273260	100%	46.8	4.08	93.5			
			Mean of Recoveries						93.3			
			MeOPR ID1201 (1000ng/L)		121595	100%	0.2	938	93.8			
			MeOPR ID1201 (1000ng/L)	Repeat Aliquot	129525	100%	0.2	852	85.2			
			MeOPR ID1201 (1000ng/L)		153681	100%	0.2	843	84.3			
		QC Samples	Mean of MeOPR					878	87.8			
			A.S.SAlfa ID0702 (1000 ng/L)		277240	100%		945	94.5			
LAB ID	Sampling Details	Sample ID	Date Sampled	Sample Type	Gross Peak Area	% CH ₃ Hg Recovery Used for Calculations	Volume of Water Sample (ml)	Net CH₃Hg as Hg (ng/L) [recovery corrected]				
60964	Marter Twp Baseline	FR215	November 19, 2012		7262	93.3	47.30	0.08				
60964	Marter Twp Baseline	FR215	November 19, 2012	Duplicate	6756	93.3	48.34	~0.08				
60965 60966	Marter Two Dup-2	۲K124 FK124	November 20, 2012		7333	93.3 Q2 2	47.60 47.27	0.08				
60967	Big Eddy Replicate	BOD121	November 19, 2012		6547	93.3	47.27 46.96	~0.08				
					1 00 17		10.00		1			

* : See 'Comments' section above for discussion.

W:\Projects\2013\130003-Xeneca-2012Reports\Job\Reports\Drafts\Big Eddy\Appendix D - Laboratory Certificates of Analysis\MTWATR120112JS2.xls

This test report shall not be reproduced, except in full, without written approval of the laboratory.

Note: Results relate only to the items tested.

Total Mercury Results

Flett Research Ltd.

440 DeSalaberry Ave. Winnipeg, MB R2L 0Y7 Fax/Phone (204) 667-2505 E-mail: flett@flettresearch.ca Webpage: http://www.flettresearch.ca

				~							
CLIENT:	Leeder, David - Hutchir	nson Enveronme	ental:Petav	wawa River	Matrix:	Fish(wet)					
	3-1 Taylor Road			Tran	saction ID:	592					
	Bracebridge, ON P1L 1S6		PO/Contract No.:								
Date Received:	August 29, 2012			Date	Analysed:	October 3, 2012					
Sampling Date:	August 21, 2012				Analyst(s):	Zorica B.					
Analytical Method:	Determination of Total Mercury in Solids us	ing EPA Method 7473 for DM	A-80 Total Mercury	y Analyser as performed by F	Flett Researcl	n Ltd. (Version 3)					
	P:\Total Hg DMA80\Methods & SOPs\T00210 Total Hg in Solids -	- DMA80.doc									
Comments:	*The relative % difference between duplicates of samples 10 and 17 fell outside of our acceptance criteria. The samples was re-analyzed and the relative % difference was within acceptance criteria. All results have been reported as in indication of sample heterogeneity. It is recommended that an average concentration be used for reporting purposes.										
Detection Limit:	1.3 ng/g ML MDL=0.4 ng/g based on 7 replicates of analytical blanks (98% confidence). This limit assumes 5 samples. Lower detection limits are possible if greater sample weights are used. For reporting presults will be flagged below the ML which is considered a practical quantitation limit.										
Estimated Uncertainty: Uncertainty has been estimated at ± 17 % (95 % confidence) at total mercury concentrations between 4 and 3000 ng/g. This uncertainty increases to 32% for defa hepatopancreas (TORT-2) due to the consistently higher recovery for this CRM.						defatted					
	Results authorized by Dr. Robert	J. Flett, Chief Scientist									
	Sample Spike Recovery	SAMPLE IDENTIFICATION	Sample Type				Hg Recovery (%)				
		7 (Catfish)		31.83							
		Mean of spiked duplicates for 7 (Catfish)					99.3				
QUALITI DATA		15 (Catfish)		14.15							
		Mean of spiked duplicates for 15 (Catfish)					96.0				
		Mean of Spike Recoveries					97.6				
	QC Samples	DORM-3 (382 ng/g) Mean					109.5				
Sampling Details	Sample ID	Date Sampled	Sample Type	Hg (ng)	Sample wet weight added to	Net Total Hg conc. (ng/g wet wt.) [recovery corrected]					

TMDSOL100312ZB1-petawawa Page 1 of 1

					boat (g)	corrected	
Catfish	1	August 21, 2012		46.15	0.05407	874	
Pickerel	2	August 21, 2012	DupA1	16.42	0.02938	572	
Pickerel	2	August 21, 2012	DupA2	16.52	0.02816	601	
Pickerel	3	August 21, 2012		29.13	0.04069	733	
Catfish	4	August 21, 2012		13.13	0.0408	330	
Catfish	5	August 21, 2012		11.33	0.03005	386	
Catfish	6	August 21, 2012		6.21	0.0287	222	
Catfish	7	August 21, 2012	Sample 1-US	31.83	0.04522	721	
Catfish	8	August 21, 2012		14.23	0.04049	360	
Catfish	9	August 21, 2012		12.61	0.03811	339	
Catfish	10*	August 21, 2012	DupB1	34.53	0.0336	1050	
Catfish	10*	August 21, 2012	DupB2	36.56	0.04384	854	
Catfish	10*	August 21, 2012	DupB3	59.49	0.05387	1130	
Catfish	10*	August 21, 2012	DupB4	92.97	0.07406	1290	
Catfish	11	August 21, 2012	DupC1	43.82	0.04044	1110	
Catfish	11	August 21, 2012	DupC2	51.01	0.0541	966	
Catfish	12	August 21, 2012		11.31	0.03298	351	
Catfish	13	August 21, 2012		10	0.03598	285	
Catfish	14	August 21, 2012		16.83	0.04436	389	
Catfish	15	August 21, 2012	DupD1	14.15	0.03473	417	
Catfish	15	August 21, 2012	DupD2	19.8	0.04924	412	
Catfish	16	August 21, 2012		29.51	0.03842	787	
Catfish	17*	August 21, 2012	DupE1	11.96	0.04354	281	
Catfish	17*	August 21, 2012	DupE2	11.24	0.05265	219	
Catfish	17*	August 21, 2012	DupE3	10.27	0.03835	274	
Catfish	18	August 21, 2012		11.4	0.03622	322	
Catfish	19	August 21, 2012		20.86	0.03156	677	
Catfish	20	August 21, 2012		22.11	0.0363	624	

*: See 'Comments' section above for discussion.

W:\Projects\2013\130003-Xeneca-2012Reports\Job\Reports\Drafts\Big Eddy\Appendix D - Laboratory Certificates of Analysis\TMDSOL100312ZB1-petawawa.xls

This test report shall not be reproduced, except in full, without written approval of the laboratory. Note: Results relate only to the items tested.

~: Below our official detection limit for this analyte in this matrix.

ISO/IEC17025:2005 Accredited with the Canadian Association for Laboratory Accreditation

Total Mercury Results

Flett Research Ltd.

440 DeSalaberry Ave. Winnipeg, MB R2L 0Y7 Fax/Phone (204) 667-2505 E-mail: flett@flettresearch.ca Webpage: http://www.flettresearch.ca

	E-mail: flett@flettres	search.ca vvebpage: http://v	ww.flettresearch.	ca										
CLIENT:	Leeder. David - Hutchins	on Enveronmenta	al:Petawaw	a River	Matrix	Fish(wot)								
	3.1 Taylor Boad			Trop	Wall IX.									
	3-1 Taylor Road					I ransaction ID: 592								
Data Rassivad	Bracebridge, ON PTL 156		PO/Contract No.:											
Sampling Date:	August 29, 2012			Dale	Analyseu.	Zorica B								
	. August 21, 2012			,	hiaiysi(s).									
Analytical Method:	Determination of Total Mercury in Solids u	ising EPA Method 7473 for DI	MA-80 Total Merc	ury Analyser as pe	erformed by F	lett Research Ltd. (Versio	n 3)							
_	P:\Total Ha DMA90\Mathada & SOBa\T00210 Total Ha is Salid	DMAR0 dog												
	- Trotal ng Divikootwiethous & SOFSTTOUZTO Total ng in Solid	S - DIMAOU.UUC												
Detection Limit:	: 1.3	8 ng/g ML	MDL=0.4 ng/g ba 50 mg wet sampl reporting purpose quantitation limit.	ased on 7 replicate les. Lower detecti les results will be fla	es of analytica on limits are p agged below	al blanks (98% confidence possible if greater sample the ML which is considere). This limit assumes weights are used. For ed a practical							
Estimated Uncertainty:	Uncertainty has been estimated at \pm 17 % hepatopancreas (TORT-2) due to the con-	% (95 % confidence)at total me sistently higher recovery for th	ercury concentrati nis CRM.	ons between 4 and	d 3000 ng/g.	This uncertainty increases	s to 32% for defatted							
	Results authorized by Dr. Rober	t J. Flett, Chief Scientis	t		_									
	Sample Spike Recovery	SAMPLE IDENTIFICATION	Sample Type				Hg Recovery (%)							
		27 (Catfish)		11.96										
		Mean of spiked duplicates for												
		27 (Catfish)					97.4							
QUALITY DATA		38 (Catfish)		22.54										
		Mean of spiked duplicates for												
		38 (Catfish)					100.3							
		Mean of Spike Recoveries					98.8							
	QC Samples	DORM-3 (382 ng/g) Mean					107.1							
Sampling Details	Sample ID	Date Sampled	Sample Type	Hg (ng)	Sample wet weight added to boat (g)	Net Total Hg conc. (ng/g wet wt.) [recovery corrected]								
Catfish	21	August 21, 2012		10.94	0.03962	279								

TMDSOL101012ZB1-petawawa Page 1 of 1

Catfish	22	August 21, 2012		20.19	0.03289	621	
Catfish	23	August 21, 2012	DupA1	29.2	0.0392	754	
Catfish	23	August 21, 2012	DupA2	25.28	0.03121	819	
Pickerel	24	August 21, 2012		24.79	0.044	570	
Catfish	25	August 21, 2012		15.85	0.04285	374	
Catfish	26	August 21, 2012		14.56	0.03756	392	
Catfish	27	August 21, 2012	Sample 1-US	11.96	0.04325	280	
Catfish	28	August 21, 2012		37.06	0.04227	887	
Catfish	29	August 21, 2012		15.78	0.04094	390	
Catfish	30	August 21, 2012		31.06	0.07351	428	
Catfish	31	August 21, 2012	DupB1	43.85	0.03724	1190	
Catfish	31	August 21, 2012	DupB2	38.53	0.03455	1130	
Catfish	32	August 21, 2012		22.24	0.04607	488	
Catfish	33	August 21, 2012		15.61	0.03584	441	
Catfish	34	August 21, 2012		19.11	0.04494	430	
Catfish	35	August 21, 2012		15.1	0.03019	506	
Catfish	36	August 21, 2012	DupC1	24.1	0.04313	565	
Catfish	36	August 21, 2012	DupC2	27.34	0.04931	561	
Catfish	37	August 21, 2012		31.65	0.04829	663	
Catfish	38	August 21, 2012	Sample 2-US	22.54	0.0554	412	
Catfish	39	August 21, 2012		56.7	0.04869	1180	
Catfish	40	August 21, 2012		64.44	0.03788	1720	

*: See 'Comments' section above for discussion.

W:\Projects\2013\130003-Xeneca-2012Reports\Job\Reports\Drafts\Big Eddy\Appendix D - Laboratory Certificates of Analysis\TMDSOL101012ZB1-petawawa.xls

~: Below our official detection limit for this analyte in this matrix.

This test report shall not be reproduced, except in full, without written approval of the laboratory. Note: Results relate only to the items tested.

ISD/IEC17025:2005 Accredited with the Canadian Association for Laboratory Accreditation

Appendix C. Field data sheets

Field Data Sheet

Xeneca Power Developments - Baseline Water Quality Sampling Program

	Facility Information									
Facility Name: BIG EDDY	Date: APR 16/12 Time: 1254									
Sample ID: BIG FMD 4	Sample Co-ordinates: 322320 5085546									
Sampling Location (brief description): DOUDSTREAM OF DAM LOCATION - 60m									
LIDSTREAM OF CP RAI	L BRINGE									
	Sampling Personnel									
Company: <u>BRMG</u>										
Personnel: ANTREA ELLIS- N	DSIAH, BOB LABRADCHE, LISA USKOV									
	Weather Conditions									
Precipitation in the last 24 hours (mr	n rain):6									
Current conditions (e.g., snow, rain,	overcast, sunny): Sun (CLOUD HIX									
Wind direction and velocity: EAst a km/hr										
	Field Measurements									
Water depth at sample location (m):	0.78 m Sample depth (m): 78 10 cm									
Dissolved Oxygen (mg/L):	.63 Water Temp. (°С):									
Conductivity (microS/cm): 38	3pH:6.26									
Turbidity (NTU):	Equipment									
	calibrated (date):									
	Samples Collected									
TSS and Dissolved Solids: 🔀	Cations/Anions: 🔀 Nutrients: 🔀									
Dissolved Organic Carbon: 💢	pH, Cond., Alk.: Metals (total):									
Low-level Mercury (total):	Low-level Mercury (methyl): Frozen? Y/N									
Low-level Phosphorus:	Filtered? Y N All samples in cooler less than 5°C? Y N									

Additional Comment / Observations

4

Field Data Sheet

Xeneca Power Developments - Baseline Water Quality Sampling Program

Facility Informatio	n
Facility Name: BIG EDDH Date	Nov 20/12 Time: 1053
Sample ID: <u>FALL SAMPLE</u> Sam	ole Co-ordinates: <u>177 5-83559 530</u> 6400
Sampling Location (brief description): <u>APPROX</u> (DEIR	LOCATION
Sampling Personn	el
Company: ORMG	
Personnel: LIGA USKOV KRISTI BEAT	14
Weather Condition	IS
Precipitation in the last 24 hours (mm rain):	
Current conditions (e.g., snow, rain, overcast, sunny):	25°2 , 100
Wind direction and velocity: CALM- 100 LOLIDD	
Field Measuremen	ts
Water depth at sample location (m): 1 m.	Sample depth (m): <u>No con</u>
Dissolved Oxygen (mg/L): 135.1 18.00	Water Temp. (°C):
Conductivity (microS/cm):	pH: _5_01
Turbidity (NTU):	Equipment calibrated (date): <u>၂୦୦୦</u> / <u>ଏଟ /ା</u> ନ୍ଦ୍ର
Samples Collecte	d
TSS and Dissolved Solids: Cations/Anions: C	Nutrients:
Dissolved Organic Carbon: Dissolved Organic Carbon: PH, Cond., Alk.:	Metals (total):
Low-level Mercury (total): Low-level Mercury (m	ethyl): Frozen? Y /N
Low-level Phosphorus: K Filtered? N	All samples in cooler less than 5°C?

Additional Comment / Observations

RIN FISH SAMPLE FORM

0

Waterbody I	Vame		Sample N	lumber		Lift D	ate	
Pet	tentente	Rue				21	Augo	2012
Net Type:	Small La	arge Extra	a-large	4' Ta	pvet	<u> </u>	0.	
11 1 01			T	FISH SAMPL	E 1~ ·	1		
(mm)	cies	Fish Num- ber	Iotal Length (mm)	Fork Length (mm)	Round Weight (g)	Sex	Maturity	Ageing Structure
	CATFISH	1	443		670			
مـــــ	ALKEHAL	.2	418		570			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	PICKEREL	3	570		1430	FEMALE		-
۱. 	CATFISH)	.4	500		1060			
	CAT FISH	5	475		770			
	CAT AISH	6	414		540			
	herath	7	500		1040			
	CATFISH	S S	440	-	610			
C	ATFISH	<u> </u>	:472		790			
	Catfish	:10	484		970			
	TAT FISH	.]] .	513		1050			N
5.	CAT FISH	12	415		510	2		X
	Cat Pish	13	444		770			
	catfish	~ 14	466	3	750	¢		
<	atrich	15	468		880			-
° (	atfish	16	.453		640	Ø		
	CAT FISH	17	430		670			
<	CATFISH)	18	433		610		0	
	CATP'SH	19	445		700		9	

Mesh Sizes (mm):	Sex Codes:	Maturity Codes:	Ageing Structure Codes:
38, 51, 64, 76, 89, 102 and 127	1 = male 2 = female 9 = unknown	1 = immature 2 = mature 9 = unknown	2 = scales, 4 = pectoral rays, 7 = dorsal spine, A = otolith, B = operculum, D = cleithrum

Ministry of Natural Resources

23

### RIN FISH SAMPLE FORM

Waterbody I	Name		Sample N	lumber		Ļ	ft Date	
Not Type:	Small La	arao Extra					wa taka na Walan kulina kulina kaka kulina kujiwa kulina kaka kulina kulina kulina kulina kulina kulina kulina	
Net Type.			a-large	FISH SAMPL	Ē			
Mesh Size (mm)	Fish Spe- cies	Fish Num- ber	Total Length (mm)	Fork Length (mm)	Round Weight (g)	Sex	Maturity	Ageing Structure
	CATFISH	90	480		850	i i	· · ·	
	CAT.FISH	ろ	415		530			
	CATFIGH	22	485		940		unit Statistica ( 1997)	
	ATFISH	23	500	•	1080			
	KREBEL	24	310		220			
	eatfish	25	473		920			
<	ATTISH	26	470	÷	840			
	ATFISH	27	416		540			
C	ATFISH	92	513		1000	1 6 F		
<	at fish	29	455		750			
	CATFISH	30	490		1000			8
<	CATFISH	31	465		730		10 17 10 17	
	ATFISH	32	484		950		8	
(	ATFISH	33	536		1250			
	PATFISH	34	462		800		4. K	
	atfish	35	485		840			
(	CATFISH	36	480		910			
	PATFISH	37	467		760		Os ^{ter} te de	
<	atfish	38	422		570			

Page ____ of ____

54.

Mesh Sizes (mm):	Sex Codes:	Maturity Codes:	Ageing Structure Codes:
38, 51, 64, 76, 89, 102 and 127	1 = male 2 = female 9 = unknown	1 = immature 2 = mature 9 = unknown	2 = scales, 4 = pectoral rays, 7 = dorsal spine, A = otolith, B = operculum, D = cleithrum

.

•

23

Ministry of Natural Resources

## **RIN FISH SAMPLE FORM**

Waterbody Name         Sample Number         Lift Date										
Petaugate River 21 Aug 2012										
Net Type: Small Large Extra-large 4° (rap Net U										
FISH SAMPLE										
(mm)	cies	ber	Length	Length	Weight (g)	Sex	ivialunity	Structure		
			(mm)	(mm)						
	CAT FISH	39	461		830					
• • • •	FATFISH	40	620		2090	4				
• •	an sange Sin gene	€ 2	e.e		нц н эс 1					
	и 7 и	5	•		•					
		• 6	) ∰ )		* *					
			e a		•					
		• •	*							
	i, to the									
		••	•		4					
	· .									
	2 F		л ^с б.							
	4 . H.S.	×	3		1. · ·					
	•	•	51		5. 1					
	ж. Ф	-								
	▲ 100				•					
		·								
-					-		5			
			5 ° 6							
	•					•				

Page 3 of 3

-

Mesh Sizes (mm):	Sex Codes:	Maturity Codes:	Ageing Structure Codes:
38, 51, 64, 76, 89, 102 and 127	1 = male 2 = female 9 = unknown	1 = immature 2 = mature 9 = unknown	2 = scales, 4 = pectoral rays, 7 = dorsal spine, A = otolith, B = operculum, D = cleithrum

-

23

Ministry of Natural Resources